Fake product rule

Calculus Level 4

d d x ( f g ) = f g \frac{d}{dx} \left(f \cdot g\right) = f' \cdot g'

Let's denote the above equation the fake product rule . Although it is generally the wrong way to differentiate the product of two functions , there are non-constant functions f f and g g for which it holds true.

Let f ( x ) = x 2 f(x) = x^2 and g ( x ) g(x) be the functions such that the fake product rule holds true.

If g ( 1 ) = 1 g(1) = 1 and g ( 5 ) = 1 9 g(5) = \frac19 , find g ( 3 ) g ( 3 ) [ f ( 4 ) g ( 4 ) ] g(3) - g'(3) - \big[f'(4) \cdot g'(4)\big] .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 22, 2017

d d x ( f ( x ) g ( x ) ) = f ( x ) g ( x ) Given and for f ( x ) = x 2 2 x g ( x ) + x 2 g ( x ) = 2 x g ( x ) 2 g = ( 2 x ) g g g = 2 2 x 1 g d g = 2 2 x d x ln g = 2 ln ( 2 x ) + C C is the constant of integration. ln g = ln 1 ( x 2 ) 2 + C g ( x ) = c 1 ( x 2 ) 2 g ( 1 ) = c 1 ( 1 2 ) 2 = 1 c 1 = 1 g ( x ) = 1 ( x 2 ) 2 g ( x ) = 2 ( x 2 ) 3 \begin{aligned} \frac d{dx} \left(f(x)g(x)\right) & = f'(x) g'(x) & \small \color{#3D99F6} \text{Given and for }f(x) = x^2 \\ 2xg(x) + x^2g'(x) & = 2xg'(x) \\ 2g & = (2-x)g' \\ \frac {g'}g & = \frac 2{2-x} \\ \int \frac 1g \ dg & = \int \frac 2{2-x} \ dx \\ \ln g & = - 2\ln (2-x) + C & \small \color{#3D99F6} C \text{ is the constant of integration.} \\ \ln g & = \ln \frac 1{(x-2)^2} + C \\ \implies g(x) & = \frac {c_1}{(x-2)^2} \\ g(1) & = \frac {c_1}{(1-2)^2} = 1 & \small \color{#3D99F6} \implies c_1 = 1 \\ \implies g(x) & = \frac 1{(x-2)^2} \\ g'(x) & = - \frac 2{(x-2)^3} \end{aligned}

g ( 3 ) g ( 3 ) ( f ( x ) g ( 4 ) ) = 1 ( 2 ) ( 2 ( 4 ) ( 2 2 3 ) ) = 5 \implies g(3) - g'(3) - \left(f'(x) g'(4)\right) = 1 - (-2) - \left(2(4) \left(-\dfrac 2{2^3}\right) \right) = \boxed{5}

Zach Abueg
Jul 21, 2017

d d x ( f g ) = f g Definition of product rule f g + f g = f g f g f g = f g g ( f f ) = f g g g = f f f g g = f f f Integrate both sides g g d x = f f f d x Note that d u u = ln u ln g = f f f d x Exponentiate both sides g = exp ( f f f d x ) Let f = x 2 and f = 2 x g = exp ( 2 x 2 x x 2 d x ) g = exp ( 2 1 2 x d x ) g = exp ( 2 ln 2 x + C ) g = 2 x 2 e C g ( 1 ) = 1 , so C = 0 g = 2 x 2 g = 1 ( 2 x ) 2 g = 2 ( 2 x ) 3 f g = 4 x ( 2 x ) 3 \displaystyle \begin{aligned} \frac{d}{dx} \left(f \cdot g\right) & = f' \cdot g' & \small \color{#3D99F6} \text{Definition of product rule} \\ {\color{#3D99F6}{f' \cdot g + f \cdot g'}} & = f' \cdot g' \\ f \cdot g' - f' \cdot g' & = - f' \cdot g \\ g' \left(f - f'\right) & = - f' \cdot g \\ \implies \frac{g'}{g} & = - \frac{f'}{f - f'} \\ \implies \frac{g'}{g} & = \frac{f'}{f' - f} & \small \color{#3D99F6} \text{Integrate both sides} \\ \implies \int \frac{g'}{g} \ dx & = \int \frac{f'}{f' - f} \ dx & \small \color{#3D99F6} \text{Note that } \int \frac{du}{u} = \ln u \\ \implies \ln |g| & = \int \frac{f'}{f' - f} \ dx & \small \color{#3D99F6} \text{Exponentiate both sides} \\ \implies g & = \exp\left(\int \frac{f'}{f' - f} \ dx\right) & \small \color{#3D99F6} \text{Let } f = x^2 \text{ and } f' = 2x \\ \implies g & = \exp\left(\int \frac{2x}{2x - x^2} \ dx \right) \\ \implies g & = \exp\left(2\int \frac{1}{2 - x} \ dx \right) \\ \implies g & = \exp\left(- 2\ln |2 - x| + C\right) \\ \implies g & = |2 - x|^{- 2} \cdot e^C & \small \color{#3D99F6} g(1) = 1 \text{, so } C = 0 \\ \implies g & = |2 - x|^{- 2} \\ \implies g & = \frac{1}{(2 - x)^2} \\ \implies g' & = \frac{2}{(2 - x)^3} \\ \implies f' \cdot g' & = \frac{4x}{(2 - x)^3} \end{aligned}

{ g ( 3 ) = 1 ( 2 3 ) 2 = 1 g ( 3 ) = 2 ( 2 3 ) 3 = 2 f ( 4 ) g ( 4 ) = 4 4 ( 2 4 ) 3 = 2 \implies \begin{cases} g(3) = \displaystyle \frac{1}{(2 - 3)^2} = 1 \\ g'(3) = \dfrac{2}{(2 - 3)^3} = - 2 \\ f'(4) \cdot g'(4) = \dfrac{4 \cdot 4}{(2 - 4)^3} = - 2 \end{cases}

g ( 3 ) g ( 3 ) [ f ( 4 ) g ( 4 ) ] = 5 \implies g(3) - g'(3) - \bigg[f'(4) \cdot g'(4)\bigg] = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...