Family Of Circles

Geometry Level 5

If A X = 2 AX = 2 and B Y = 1 BY = 1 , find the radius of the smallest circle to 2 decimal places.


The answer is 0.27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Feb 26, 2017

Not counting the circles of radius 3 3 and 2 2 , let k 0 , k 1 , k 2 , , k 4 k_0,k_1,k_2,\ldots,k_4 be the curvatures of the other circles. from largest to smallest. Then k 0 = 1 k_0 = 1 . For any 0 n 3 0 \le n \le 3 , we see that the circle of curvature 1 3 \tfrac13 is externally tangent to the three mutually tangent circles of curvature 1 2 \tfrac12 , k n k_n and k n + 1 k_{n+1} . Using Descartes Theorem, this implies that 1 3 = k n + 1 + k n + 1 2 2 k n + 1 k n + 1 2 k n + 1 2 k n + 1 -\tfrac13 \; = \; k_{n+1} + k_n + \tfrac12 - 2\sqrt{k_{n+1}k_n + \tfrac12k_n + \tfrac12k_{n+1}} and hence that k n + 1 = 1 6 + k n + 1 3 6 ( k n 1 ) k_{n+1} \; = \; \tfrac16 + k_n + \tfrac13\sqrt{6(k_n - 1)} A simple induction shows that k n = 1 6 ( 6 + n 2 ) 0 n 4 k_n \; = \; \tfrac16(6 + n^2) \hspace{1cm} 0 \le n \le 4 and hence k 4 = 11 3 k_4 = \tfrac{11}{3} , so the radius of the smallest circle is 3 11 = 0. 2 ˙ 7 ˙ \tfrac{3}{11} = \boxed{0.\dot{2}\dot{7}} .

Can you explain how you went from the first equation to the second?

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

2 k n + 1 k n + 1 2 k n + 1 + 1 2 k n = k n + 1 + k n + 5 6 4 ( k n + 1 k n + 1 2 k n + 1 + 1 2 k n ) = ( k n + 1 + k n + 5 6 ) 2 \begin{aligned} 2\sqrt{k_{n+1}k_n + \tfrac12k_{n+1} + \tfrac12k_n} & = k_{n+1} + k_n + \tfrac56 \\ 4\big(k_{n+1}k_n + \tfrac12k_{n+1} + \tfrac12k_n\big) & = \big(k_{n+1} + k_n + \tfrac56\big)^2 \end{aligned} Now solve this quadratic to find a positive k n + 1 k_{n+1} in terms of k n k_n .

Mark Hennings - 4 years, 3 months ago
SwayamS Mohapatra
Feb 25, 2017
  • If the radius BY=a, AX =b
  • The radius of larger circle is (a+b)
  • Leaving these 3 circles, there is a generalised formula for calculating the radius of any circle tangent to these circles and the pattern continuing! The radius of nth circle is--
  • ( a × b × ( a + b ) ) ÷ ( n 2 × a 2 + a × b + b 2 ) (a\times b\times (a+b))\div (n^{2}\times a^{2} + a\times b + b^{2} )
  • so accordingly, radius of 4th circle in the pattern is-
  • ( 1 × 2 × 3 ) / ( 16 × 1 + 2 + 4 ) (1\times 2\times 3)/(16\times 1 + 2 + 4 ) = 0.272
  • 0.27 \textbf{0.27}

Using your formula for a = 1 , b = 2 , n = 4 a=1, b=2, n=4 gives the answer of 3 11 0.27 \frac{3}{11} \approx \boxed{0.27} . You used it for a = 2 , b = 1 , n = 4 a=2, b=1, n=4 which gives the wrong answer.

Maria Kozlowska - 4 years, 3 months ago

Log in to reply

Ohh sorry I just pointed out, thanks @Maria Kozlowska

SwayamS Mohapatra - 4 years, 3 months ago

U s i n g D e s c a r t e s T h e o r e m , K 1 = 1 / 3 , K 2 = 1 / 2 , K 3 = 1 / 1. K 4 = 1 / 3 + 1 / 2 + 1 / 1 ± 2 1 / 6 + 1 / 2 1 / 3 . G i v e s K 4 = 7 / 6 . F o r n e x t c i r c l e s , K 3 w i l l b e r e p l a c e d b y K n , a n d K 4 b y K n + 1 , n = 4 , 5 , 6 , 7. S o K n + 1 = 1 / 3 + 1 / 2 + K n ± 2 1 / 6 + 1 / 2 K n 1 / 3 K n . K n + 1 = 1 / 6 + K n ± 2 K n 1 6 . n = 4 , K 5 = 1 / 6 + 7 / 6 ± 7 / 6 1 6 = 4 / 3 ± 1 / 3....... K 5 = 5 / 3 , K 3 = 1 / 1.. ( c o r r e c t ) K 5 = 5 / 3 . n = 5 , K 6 = 1 / 6 + 5 / 3 ± 5 / 3 1 6 = 11 / 6 ± 2 / 3...... K 6 = 5 / 2 , K 4 = 7 / 6.. ( c o r r e c t ) K 6 = 5 / 2 . n = 6 , K 7 = 1 / 6 + 5 / 2 ± 5 / 2 1 6 = 8 / 3 ± 1. . . . . . K 7 = 11 / 3 , K 4 = 5 / 3.. ( c o r r e c t ) K 7 = 11 / 3 . R 7 = 0.272727. Using~ Descartes ~Theorem,\\ K_1= - 1/3,~~~K_2= 1/2,~~~K_3= 1/1.\\ \therefore~K_4 = - 1/3 + 1/2 + 1/1 \pm ~2\sqrt{- 1/6+1/2 - 1/3}.\\ Gives~\color{#3D99F6}{K_4=7/6}.\\ For~next~circles,~K_3~ will ~be~replaced~by~K_n,~and ~K_4 ~by~K_{n+1},~~~n=4,~5, ~6,~ 7.~\\ So~K_{n+1}=- 1/3 + 1/2 + K_n \pm ~2\sqrt{- 1/6+1/2 *K_n - 1/3*K_n.}\\ \implies~\color{#3D99F6}{K_{n+1}= 1/6 + K_n \pm ~2\sqrt{\dfrac{K_n - 1} 6} }. \\ n=4,~~K_5=1/6 + 7/6 \pm~\sqrt{\dfrac{7/6-1} 6}=4/3\pm 1/3. ......~~K_5=5/3,~~~ K_3=1/1..(correct) \\ \color{#3D99F6}{K_5=5/3}.\\ n=5,~~K_6=1/6 + 5/3 \pm~\sqrt{\dfrac{5/3-1} 6}=11/6 \pm 2/3...... ~~K_6=5/2, ~~~K_4=7/6..(correct) \\ \color{#3D99F6}{K_6=5/2}.\\ n=6,~~K_7=1/6 + 5/2 \pm~\sqrt{\dfrac{5/2-1} 6}=8/3 \pm 1. ~~.....K_7=11/3, ~~~K_4=5/3..(correct) \\ \color{#D61F06}{K_7=11/3}.\\ R_7=\Large~~\color{#D61F06}{0.272727}.

Note that at every n t h n^{th} circle we get two values. The - tive gives value of ( n 1 ) t h (n-1)^{th} circle, and that confirms with our previous value, tells us that our calculations are correct.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...