Family of Products

Calculus Level 5

f ( x ) = n = 1 cos ( x 2 n + 1 ) = n = 1 1 3 ( 1 + 2 cos ( x 3 n ) ) = n = 1 1 2 ( cos ( 1 2 x 4 n ) + cos ( 3 2 x 4 n ) ) = n = 1 1 5 ( 1 + 2 cos ( x 5 n ) + 2 cos ( 2 x 5 n ) ) = n = 1 1 3 ( cos ( 1 2 x 6 n ) + cos ( 3 2 x 6 n ) + cos ( 5 2 x 6 n ) ) = { n = 1 ( 1 r k = r 1 2 r 1 2 cos ( k x r n ) ) for odd integers r > 1 n = 1 ( 1 r k = r 2 + 1 r 2 cos ( ( k 1 2 ) x r n ) ) for even integers r > 1. \begin{aligned} f(x) &=\prod_{n=1}^{\infty}\cos\left(\frac{x}{2^{n+1}}\right)\\ &=\prod_{n=1}^{\infty}\frac{1}{3}\left(1+2\cos\Big(\frac{x}{3^n}\Big)\right)\\ &=\prod_{n=1}^{\infty}\frac{1}{2}\left(\cos\Big(\frac{1}{2}\frac{x}{4^n}\Big)+\cos\Big(\frac{3}{2}\frac{x}{4^n}\Big)\right)\\ &=\prod_{n=1}^{\infty}\frac{1}{5}\left(1+2\cos\Big(\frac{x}{5^n}\Big)+2\cos\Big(\frac{2x}{5^n}\Big)\right)\\ &=\prod_{n=1}^{\infty}\frac{1}{3}\left(\cos\Big(\frac{1}{2}\frac{x}{6^n}\Big)+\cos\Big(\frac{3}{2}\frac{x}{6^n}\Big)+\cos\Big(\frac{5}{2}\frac{x}{6^n}\Big)\right)\\\\ &= \begin{cases} \displaystyle \prod_{n=1}^{\infty}\left(\frac{1}{r}\sum_{k=-\frac{r-1}{2}}^{\frac{r-1}{2}}\cos\left(\frac{kx}{r^n}\right)\right) & \text{for odd integers }r>1 \\ \\ \displaystyle \prod_{n=1}^{\infty}\left(\frac{1}{r}\sum_{k=-\frac{r}{2}+1}^{\frac{r}{2}}\cos\left(\Big(k-\frac{1}{2}\Big)\frac{x}{r^n}\right)\right) & \text{for even integers }r>1. \end{cases} \end{aligned}

Prove that the above family of products equate one another and find

0 2 π x f ( x ) d x . \int_0^{2\pi}xf\left(x\right)\,dx.


Inspiration: MIT Integration Bee 2015


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
Mar 16, 2018

Lemma (left as an exercise for the reader)

n = 1 N k = 0 r 1 x k r n = k = 0 r N 1 x k r N \large \prod_{n=1}^N\sum_{k=0}^{r-1}x^{\frac{k}{r^n}}=\sum_{k=0}^{r^N-1}x^{\frac{k}{r^N}}


For odd r r :

n = 1 ( 1 r k = r 1 2 r 1 2 cos ( k x r n ) ) = lim N n = 1 N 1 r k = r 1 2 r 1 2 cos ( k x r n ) = lim N n = 1 N 1 r k = r 1 2 r 1 2 e i k x r n + e i k x r n 2 = lim N n = 1 N 1 r k = r 1 2 r 1 2 e i k x r n = lim N n = 1 N 1 r exp ( i r 1 2 x r n ) k = 0 r 1 e i k x r n = J \large \begin{aligned} \displaystyle \prod_{n=1}^{\infty}\left(\frac{1}{r}\sum_{k=-\frac{r-1}{2}}^{\frac{r-1}{2}}\cos\left(\frac{kx}{r^n}\right)\right) &= \displaystyle \lim_{N \rightarrow \infty} \prod_{n=1}^N\frac{1}{r}\sum_{k=-\frac{r-1}{2}}^{\frac{r-1}{2}}\cos\left(\frac{kx}{r^n}\right) \\ \displaystyle &=\lim_{N \rightarrow \infty}\prod_{n=1}^N\frac{1}{r}\sum_{k=-\frac{r-1}{2}}^{\frac{r-1}{2}}\frac{e^{i\frac{kx}{r^n}}+e^{-i\frac{kx}{r^n}}}{2} \\ \displaystyle &=\lim_{N \rightarrow \infty}\prod_{n=1}^N\frac{1}{r} \sum_{k=-\frac{r-1}{2}}^{\frac{r-1}{2}}e^{i\frac{kx}{r^n}} \\ \displaystyle &=\lim_{N \rightarrow \infty}\prod_{n=1}^N\frac{1}{r}\exp\left(-i\frac{r-1}{2}\cdot\frac{x}{r^n}\right)\sum_{k=0}^{r-1}e^{i\frac{kx}{r^n}} \\ \displaystyle &=J \end{aligned}

For even r r :

n = 1 ( 1 r k = r 2 + 1 r 2 cos ( ( k 1 2 ) x r n ) ) = lim N n = 1 N 1 r k = r 2 + 1 r 2 cos ( ( k 1 2 ) x r n ) = lim N n = 1 N 1 r k = r 2 + 1 r 2 e i ( k 1 2 ) x r n + e ( k 1 2 ) x r n 2 = lim N n = 1 N 1 r k = r 2 + 1 r 2 e i ( k 1 2 ) x r n = lim N n = 1 N 1 r exp ( i r 1 2 x r n ) k = 0 r 1 e i k x r n = J \large \begin{aligned} \displaystyle \prod_{n=1}^{\infty}\left(\frac{1}{r}\sum_{k=-\frac{r}{2}+1}^{\frac{r}{2}}\cos\left(\Big(k-\frac{1}{2}\Big)\frac{x}{r^n}\right)\right) &=\displaystyle \lim_{N \rightarrow \infty} \prod_{n=1}^N\frac{1}{r}\sum_{k=-\frac{r}{2}+1}^{\frac{r}{2}}\cos\left(\left(k-\frac{1}{2}\right)\frac{x}{r^n}\right) \\ &=\displaystyle\lim_{N \rightarrow \infty} \prod_{n=1}^N\frac{1}{r}\sum_{k=-\frac{r}{2}+1}^{\frac{r}{2}}\frac{e^{i\left(k-\frac{1}{2}\right)\frac{x}{r^n}}+e^{-\left(k-\frac{1}{2}\right)\frac{x}{r^n}}}{2} \\ &=\displaystyle\lim_{N \rightarrow \infty} \prod_{n=1}^N\frac{1}{r}\sum_{k=-\frac{r}{2}+1}^{\frac{r}{2}}e^{i\left(k-\frac{1}{2}\right)\frac{x}{r^n}} \\ &=\displaystyle\lim_{N \rightarrow \infty} \prod_{n=1}^N\frac{1}{r}\exp\left(-i\frac{r-1}{2}\cdot\frac{x}{r^n}\right)\sum_{k=0}^{r-1}e^{ik\frac{x}{r^n}} \\ &=J \end{aligned}

So:

J = lim N n = 1 N 1 r exp ( i r 1 2 x r n ) k = 0 r 1 e i k x r n = lim N exp ( i x 1 r N 2 ) 1 r N n = 1 N k = 0 r 1 e i k x r n Via Lemma = lim N exp ( i x 1 r N 2 ) 1 r N k = 0 r N 1 e i k x r N Via Riemann Sum = exp ( i x 2 ) 0 1 e i x y d y = e i x 2 1 i x ( e i x 1 ) = 1 i x ( e i x 2 e i x 2 ) = 2 x sin ( x 2 ) \large \begin{aligned} J &= \displaystyle \lim_{N \rightarrow \infty} \prod_{n=1}^N\frac{1}{r}\exp\left(-i\frac{r-1}{2}\cdot\frac{x}{r^n}\right)\sum_{k=0}^{r-1}e^{ik\frac{x}{r^n}} \\ &= \displaystyle \lim_{N \rightarrow \infty} \exp\left(-ix\frac{1-r^{-N}}{2}\right)\cdot\frac{1}{r^N}\prod_{n=1}^N\sum_{k=0}^{r-1}e^{i\frac{kx}{r^n}} & \text{ Via Lemma} \\ &= \displaystyle \lim_{N \rightarrow \infty} \exp\left(-ix\frac{1-r^{-N}}{2}\right)\cdot\frac{1}{r^N}\sum_{k=0}^{r^N-1}e^{i\frac{kx}{r^N}} & \text{ Via Riemann Sum} \\ &= \displaystyle \exp\left(\frac{-ix}{2}\right)\cdot\int_0^1e^{ixy}dy \\ &= \displaystyle e^{-\frac{ix}{2}}\cdot\frac{1}{ix}\left(e^{ix}-1\right) \\ &= \displaystyle \frac{1}{ix}\left(e^{\frac{ix}{2}}-e^{-\frac{ix}{2}}\right) \\ &= \displaystyle \frac{2}{x}\sin\left(\frac{x}{2}\right) \end{aligned}

Finally:

0 2 π x f ( x ) = 0 2 π 2 sin ( x 2 ) = 8 \large \int_0^{2\pi}xf\left(x\right)=\int_0^{2\pi}2\sin\left(\frac{x}{2}\right)=\boxed{8}

Steven Yuan
Mar 11, 2018

(I'll solve the integral first, will figure out the identities later.)

Note that

sin x 2 i + 1 n = 1 i cos x 2 n + 1 = sin x 2 i + 1 cos x 2 i + 1 n = 1 i cos x 2 n = 1 2 sin x 2 i cos x 2 i n = 1 i 1 cos x 2 n = 1 2 2 sin x 2 i 1 cos x 2 i 1 n = 1 i 2 cos x 2 n = = 1 2 k sin x 2 i + 1 k cos x 2 i + 1 k n = 1 i k cos x 2 n = = 1 2 i sin x 2 . \begin{aligned} \sin \dfrac{x}{2^{i + 1}} \prod_{n = 1}^i \cos \dfrac{x}{2^{n + 1}} &= \sin \dfrac{x}{2^{i + 1}} \cos \dfrac{x}{2^{i + 1}} \prod_{n = 1}^i \cos \dfrac{x}{2^n} \\ &= \dfrac{1}{2} \sin \dfrac{x}{2^i} \cos \dfrac{x}{2^i} \prod_{n = 1}^{i - 1} \cos \dfrac{x}{2^n} \\ &= \dfrac{1}{2^2} \sin \dfrac{x}{2^{i - 1}} \cos \dfrac{x}{2^{i - 1}} \prod_{n = 1}^{i - 2} \cos \dfrac{x}{2^n} \\ &= \cdots \\ &= \dfrac{1}{2^k} \sin \dfrac{x}{2^{i + 1 - k}} \cos \dfrac{x}{2^{i + 1 - k}} \prod_{n = 1}^{i - k} \cos \dfrac{x}{2^n} \\ &= \cdots \\ &= \dfrac{1}{2^i} \sin \dfrac{x}{2}. \end{aligned}

Thus,

f ( x ) = lim i n = 1 i cos x 2 n + 1 = lim i sin x 2 2 i sin x 2 i + 1 = sin x 2 lim 2 i 1 2 i sin x 2 i + 1 = sin x 2 lim j 1 j sin x 2 j (let j = 2 i ) = sin x 2 lim j 1 j sin x 2 j = sin x 2 lim j 1 j 2 x 2 j 2 cos x 2 j (applying L’Hopital’s rule) = sin x 2 lim j 2 x cos x 2 j = 2 x sin x 2 , \begin{aligned} f(x) &= \lim_{i \rightarrow \infty} \prod_{n = 1}^i \cos \dfrac{x}{2^{n + 1}} \\ &= \lim_{i \rightarrow \infty} \dfrac{\sin \frac{x}{2}}{2^i \sin \frac{x}{2^{i + 1}}} \\ &= \sin \dfrac{x}{2} \lim_{2^i \rightarrow \infty} \dfrac{1}{2^i \sin \frac{x}{2^{i + 1}}} \\ &= \sin \dfrac{x}{2} \lim_{j \rightarrow \infty} \dfrac{1}{j \sin \frac{x}{2j}} \quad \small {\color{cyan} \text{(let } j = 2^i \text{)}} \\ &= \sin \dfrac{x}{2} \lim_{j \rightarrow \infty} \dfrac{\frac{1}{j}}{\sin \frac{x}{2j}} \\ &= \sin \dfrac{x}{2} \lim_{j \rightarrow \infty} \dfrac{-\frac{1}{j^2}}{ -\frac{x}{2j^2} \cos \frac{x}{2j}} \quad \small {\color{cyan} \text{(applying L'Hopital's rule)}} \\ &= \sin \dfrac{x}{2} \lim_{j \rightarrow \infty} \dfrac{2}{x \cos \frac{x}{2j}} \\ &= \dfrac{2}{x} \sin \dfrac{x}{2}, \end{aligned}

and

0 2 π x f ( x ) d x = 0 2 π x ( 2 x sin x 2 ) d x = 0 2 π 2 sin x 2 d x = [ 4 cos x 2 ] 0 2 π = 4 cos π + 4 cos 0 = 8 . \begin{aligned} \int_0^{2\pi} x f(x) \, dx &= \int_0^{2\pi} x \left ( \dfrac{2}{x} \sin \dfrac{x}{2} \right ) \, dx \\ &= \int_0^{2\pi} 2 \sin \dfrac{x}{2} \, dx \\ &= \left [ -4 \cos \dfrac{x}{2} \right ]_0^{2\pi} \\ &= -4 \cos \pi + 4 \cos 0 \\ &= \boxed{8}. \end{aligned}

This isn't the complete solution though, you haven't proven the other products

Julian Poon - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...