Famous Inequality

Calculus Level 2

In any A B C \triangle ABC and n 0 n\ge 0 , the following is true: 1 sin n A 2 + 1 sin n B 2 + 1 sin n C 2 x y n \frac{1}{\sin^n \frac{A}{2}} + \frac{1}{\sin^n \frac{B}{2}} + \frac{1}{\sin^n \frac{C}{2}} \ge x y^n

What is x + y x + y , where x x and y y are positive coprime integers?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 14, 2020

By AM-GM inequality , we have:

1 sin n A 2 + 1 sin n B 2 + 1 sin n C 2 3 sin n A 2 sin n B 2 sin n C 2 3 Equality occurs when A = B = C = π 3 3 2 n \begin{aligned} \frac 1{\sin^n \frac A2} + \frac 1{\sin^n \frac B2} + \frac 1{\sin^n \frac C2} & \ge \frac 3{\sqrt[3]{\sin^n \frac A2 \sin^n \frac B2 \sin^n \frac C2}} & \small \blue{\text{Equality occurs when }A=B=C = \frac \pi 3} \\ & \ge 3\cdot 2^n \end{aligned}

Therefore x + y = 3 + 2 = 5 x+y = 3+2 = \boxed 5 .

Me : going to suicide

This chinese man : c'mon, i can do it all the time

Delbert McCullum - 1 year ago

Log in to reply

What do you mean? Saya tak bererti.

Chew-Seong Cheong - 1 year ago
Hana Wehbi
May 13, 2020

In any triangle A B C \triangle ABC and n 0 n\ge 0 , the following inequality is true: 1 sin n A 2 + 1 sin n B 2 + 1 sin n C 2 3 × 2 n \frac{1}{\sin^n \frac{A}{2}} + \frac{1}{\sin^n \frac{B}{2}} + \frac{1}{\sin^n \frac{C}{2}} \ge 3\times2^n

x + y = 5 \implies x + y = 5 .

Proof:

Let A B C \triangle ABC be any acute angled triangle , then:

f ( x ) = csc n x 2 for all x ( 0 , π 2 ) f(x) = \csc^n \frac{x}{2}\text{ for all } x \in (0,\frac{\pi}{2})

f ( x ) = n 2 csc n x 2 cot x 2 \implies f'(x) = \frac{-n}{2} \csc^n \frac{x}{2} \cot \frac{x}{2}

f " ( x ) = n 2 4 csc n x 2 cot 2 x 2 + n 4 csc n + 2 x 2 > 0 \implies f"(x) = \frac{n^2}{4} \csc^n \frac{x}{2} \cot^2\frac{x}{2} + \frac{n}{4} \csc^{n+2} \frac{x}{2} > 0

By applying Jensen's Inequality:

c y c csc n A 2 3 csc n ( π 6 ) = 2 n \sum_{cyc} \frac{\csc^n \frac{A}{2}}{3} \ge \csc^n (\frac{\pi}{6}) = 2^n

c y c csc n A 2 3 × 2 n \implies \sum_{cyc} \csc^n \frac{A}{2} \ge 3\times 2^n

If A B C \triangle ABC was an obtuse triangle then:

a b + c = sin A sin B + sin C = sin A sin ( B C 2 ) sin A 2 \frac{a}{b+c} = \frac{\sin A}{\sin B +\sin C} = \frac {\sin A}{\sin (\frac{B-C}{2})} \ge \sin \frac{A}{2}

csc A 2 b + c a \implies \csc\frac{A}{2} \ge \frac{b+c}{a}

c y c csc n A 2 ( b + c a ) n 3 ( b + c a ) n 3 3 × 2 n \sum_{cyc} \csc^n\frac{A}{2} \ge \sum \Big(\frac{b+c}{a}\Big)^n \ge 3 \sqrt[3]{\prod \Big(\frac{b+c}{a}\Big)^n} \ge 3 \times 2^n

Since you told "in any triangle... ", we can consider a particular triangle, namely, an equilateral triangle. For such a triangle, it's easy to see that x = 3 , y = 2 x=3,y=2 .

Log in to reply

I meant since it is a general inequality, it has to be applicable to any triangle.

Hana Wehbi - 1 year ago

@Alak Bhattacharya , please can you add your solution again to the geometry (Stacking squares in a triangle) problem. I have deleted the old one because there was error in the answer. Thank you.

Hana Wehbi - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...