Fan of Ramanujan? Fan of Factorials? Desserts?

Algebra Level 3

2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) . . . = ? 2(0.5!)\sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{2(0.5!)...}}}}} = ?

What is the value of the infinite series above? State your answer with 3 significant figures.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Using the Ramanujan's formula for nested radical (26) :

x + n + a = a x + ( n + a ) 2 + x a ( x + n ) + ( n + a ) 2 + ( x + n ) a ( x + 2 n ) + ( n + a ) 2 + ( x + 2 n ) x+n+a = \sqrt{ax + (n+a)^2 + x\sqrt{a(x+n) + (n+a)^2 + (x+n)\sqrt{a(x+2n) + (n+a)^2 + (x+2n)\sqrt{\cdots}}}}

Setting x = 2 ( 0.5 ! ) x=2(0.5!) , n = 0 n=0 and a = 0 a=0 , we have:

2 ( 0.5 ! ) = 2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) ( 2 ( 0.5 ! ) ) 2 = 2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) 2 ( 0.5 ! ) \begin{aligned} 2(0.5!) & = \sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{\cdots}}}} \\ (2(0.5!))^2 & = 2(0.5!) \sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{2(0.5!)\sqrt{\cdots}}}} \end{aligned}

Note that 0.5 ! ) = Γ ( 0.5 + 1 ) = Γ ( 3 2 ) = 1 2 Γ ( 1 2 ) = 1 2 π 0.5!) = \Gamma (0.5+1) = \Gamma \left(\frac 32 \right) = \frac 12 \Gamma \left(\frac 12 \right) = \frac 12 \sqrt \pi , where Γ ( ) \Gamma (\cdot) denotes that gamma function . Therefore ( 2 ( 0.5 ! ) ) 2 = π 3.14 (2(0.5!))^2 = \pi \approx \boxed{3.14} in three significant figures.

Timothy Cao
Apr 3, 2018

Because the pattern goes on forever, we can substitute it into itself:

x = ( 2 ) ( 0.5 ! ) x x = (2)(0.5!)\sqrt{x}

x = ( 2 ) ( 0.5 ! ) \sqrt{x} = (2)(0.5!)

x = 4 ( 0.5 ! ) 2 x = 4(0.5!)^2

x = π x = \pi

William Allen
Dec 22, 2019

1 2 ! = Γ ( 3 2 ) = 1 2 Γ ( 1 2 ) \frac{1}{2}! = \Gamma(\frac{3}{2}) = \frac{1}{2}\Gamma(\frac{1}{2})

Using Euler's Reflection formula,

Γ ( z ) Γ ( 1 z ) = π sin ( π z ) for all non integer values of z and taking z = 1 2 Γ ( 1 2 ) = π then, \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)} \quad \text{ for all non integer values of } z \text{ and taking } z = \frac{1}{2} \implies \Gamma(\frac{1}{2}) = \sqrt{\pi} \text{ then,}

1 2 Γ ( 1 2 ) = 1 2 π 2 ( 1 2 ) ! = π \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{1}{2}\sqrt{\pi} \implies 2\cdot (\frac{1}{2})! = \sqrt{\pi}

Let x = π π then x 2 = π x x ( x π ) = 0 x = π 3.14 x = \sqrt{\pi}\sqrt{\sqrt{\pi}\sqrt{\cdots}} \text{ then } \, x^2 = \pi x \, \therefore \, x(x-\pi) = 0 \implies x = \pi \approx \boxed{3.14}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...