Farewell 2016

Algebra Level 3

If a 3 + b 3 + c 3 = 0 \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0 , then ( a + b + c ) 3 (a+b+c)^3 must simplify to which of the following expressions?

0 0 1 -1 81 a b c 81 abc 27 a b c 27abc 1 1 3 a b c 3abc 9 a b c 9abc

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From the identity

( a 3 ) 3 + ( b 3 ) 3 + ( c 3 ) 3 = ( a 3 + b 3 + c 3 ) [ ( a 3 ) 2 + ( b 3 ) 2 + ( c 3 ) 2 a 3 b 3 b 3 c 3 c 3 a 3 ] + 3 a 3 b 3 c 3 a + b + c = ( 0 ) [ ( a 3 ) 2 + ( b 3 ) 2 + ( c 3 ) 2 a 3 b 3 b 3 c 3 c 3 a 3 ] + 3 a b c 3 = 3 a b c 3 ( a + b + c ) 3 = 27 a b c \begin{aligned} (\sqrt [3] a)^3 + (\sqrt [3] b)^3 + (\sqrt [3] c)^3 & = {\color{#D61F06}(\sqrt [3] a + \sqrt [3] b + \sqrt [3] c)} [(\sqrt [3] a)^2 + (\sqrt [3] b)^2+ (\sqrt [3] c)^2 - \sqrt [3] a \sqrt [3] b - \sqrt [3] b \sqrt [3] c - \sqrt [3] c \sqrt [3] a] + 3 \sqrt [3] a \sqrt [3] b \sqrt [3] c \\ a + b + c & = {\color{#D61F06}(0)} [(\sqrt [3] a)^2 + (\sqrt [3] b)^2+ (\sqrt [3] c)^2 - \sqrt [3] a \sqrt [3] b - \sqrt [3] b \sqrt [3] c - \sqrt [3] c \sqrt [3] a] + 3 \sqrt [3] {abc} \\ & = 3\sqrt [3] {abc} \\ \implies (a+b+c)^3 & = \boxed{27abc} \end{aligned}

If x + y + z = 0 , x 3 + y 3 + z 3 = 3 x y z x+y+z=0, x^3+y^3+z^3=3xyz

Putting x = a 3 , y = b 3 , z = c 3 , x=\sqrt[3]{a}, y=\sqrt[3]{b}, z=\sqrt[3]{c},

a + b + c = 3 a 3 b 3 c 3 a+b+c=3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c}

( a + b + c ) 3 = 27 a b c \implies (a+b+c)^3=\boxed{27abc}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...