Fascinating Diophantines

We have x + y = x 2 x y + y 2 x+y=x^2-xy+y^2 , where x , y N 0 x,y\in\mathbb N_0 .

If there are n n unordered solutions to the equation ( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x n , y n ) (x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n) , find i = 1 n ( x i + y i ) + n \displaystyle \sum_{i=1}^n(x_i+y_i) +n .

Clarification:- Unordered solution means ( p , q ) and ( q , p ) (p,q)\text{ and }(q,p) are to be counted as one solution.


Inspiration

For more go here and here


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

In this solution, the approach is to write the equation in simple form.

x + y = x 2 x y + y 2 \displaystyle x+y=x^2-xy+y^2

( x + y ) x y = ( x 2 x y + y 2 ) x y \Rightarrow\displaystyle (x+y)-xy=(x^2-xy+y^2) -xy

( x + y ) x y = ( x y ) 2 \Rightarrow\displaystyle (x+y)-xy=(x-y)^2

1 + ( x + y ) x y = ( x y ) 2 1 \Rightarrow\displaystyle -1+(x+y)-xy=(x-y)^2 -1

( x 1 ) ( 1 y ) = ( x y ) 2 1 \Rightarrow\displaystyle (x-1)(1-y)=(x-y)^2 -1

Now let x 1 = a x-1=a and 1 y = b 1-y=b .

We find that x y = a + b x- y=a+b .

So the equation can be written as

a b = ( a + b ) 2 1 \displaystyle ab=(a+b)^2 -1

a b = a 2 + b 2 + 2 a b 1 \Rightarrow\displaystyle ab=a^2+b^2+2ab -1

1 = a 2 + b 2 + a b \Rightarrow\displaystyle 1=a^2+b^2+ab

Since a 2 , b 2 a^2,b^2 , and a b 1 ab \geq-1

The only solution of above are ( a , b ) ( 0 , 1 ) , ( 1 , 0 ) , ( 1 , 1 ) , ( 1 , 1 ) (a,b) \in (0,1),(1,0),(-1,1),(1,-1)

So ( x , y ) ( 1 , 0 ) , ( 2 , 1 ) , ( 0 , 0 ) , ( 2 , 2 ) (x,y)\in(1,0),(2,1),(0,0),(2,2) .

So the answer is ( 1 + 0 + 2 + 1 + 0 + 0 + 2 + 2 ) + 4 = 12 (1+0+2+1+0+0+2+2)+4=\boxed{12} .

Nice solution:-)

Ankit Tiwari - 2 years, 10 months ago
Taisanul Haque
Oct 31, 2018

The expression x + y = x 2 x y + y 2 x+y=x^2-xy+y^2 can be written as x 2 + y 2 x y x y = 0 x^2+y^2-xy-x-y=0 .Now multiplied both side of the new equation by 2 2 and rewrite the expression as follows x 2 2 x y + y 2 + x 2 2 x + 1 + y 2 2 y + 1 = 2 x^2-2xy+y^2 +x^2-2x+1 +y^2-2y+1=2

( x y ) 2 + ( x 1 ) 2 + ( y 1 ) 2 = 2 \Rightarrow ({ x-y })^{ 2 }+{ (x-1) }^{ 2 }+{ (y-1) }^{ 2 }=2

\Rightarrow we get three cases.

Case 1 : 1: x y = 0 , x = 1 , 1 , y = 1 , 1 \ { x-y }=0,x=1,-1 ,y=1,-1 here accepted solution are ( 0 , 0 ) , ( 2 , 2 ) (0,0),(2,2)

Case 2 : 2: x y = 1 , 1 , x 1 = 0 , y 1 = 1 , 1 x-y=1,-1 ,x-1=0, y-1=1,-1 here accepted solution are ( 1 , 0 ) , ( 1 , 2 ) (1,0),(1,2)

Case 3 : 3: x y = 1 , 1 , x 1 = 1 , 1 , y 1 = 0 x-y=1,-1, x-1=1,-1, y-1=0 here accepted solution are ( 0 , 1 ) , ( 2 , 1 ) (0,1),(2,1)

but as stated in the question ( 1 , 0 ) , ( 1 , 2 ) (1,0),(1,2) = = ( 0 , 1 ) , ( 2 , 1 ) (0,1),(2,1) .Hence answer would be 12 12 .

Pi Han Goh
May 8, 2018

Rearranging gives x 2 + x ( y 1 ) + ( y 2 y ) = 0 x^2 + x(-y - 1) + (y^2- y) = 0 . Since we want to find integer roots, then quadratic discriminant (in x x ) must be a square of an integer (and non-negative):

( y 1 ) 2 4 ( 1 ) ( y 2 y ) 0 3 y 2 6 y 1 0 3 2 3 3 y 3 + 2 3 3 , (-y-1)^2 - 4(1)(y^2 - y) \geq 0 \quad \Leftrightarrow \quad 3y^2 - 6y - 1 \leq 0 \quad \Leftrightarrow \quad \dfrac{3 - 2\sqrt3}3 \leq y \leq \dfrac{3 + 2\sqrt3}3,

so the only possible values of y y are 0, 1 and 2.

Trial and error shows that ( x , y ) = ( 0 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ( 2 , 1 ) , ( 1 , 2 ) (x,y) = (0,0), (1,0), (0,1) , (2,1) , (1,2) .

Elegant approach, Thanks.

Shreyansh Mukhopadhyay - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...