Fascinating minima

Algebra Level 4

( x + 1 y ) 2 + ( y + 1 z ) 2 + ( z + 1 x ) 2 \large \left (x+\dfrac{1}{y}\right)^2+\left(y+\dfrac{1}{z}\right)^2+\left(z+\dfrac{1}{x}\right)^2

If x , y x,y and z z are are positive numbers satisfying x + y + z = 6 x+y+z=6 , find the minimum value of expression above.


For more problems try my set .


The answer is 18.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Titu's Lemma

By Titu's Lemma ,

( x + 1 y ) 2 + ( y + 1 z ) 2 + ( z + 1 x ) 2 ( x + y + z + 1 x + 1 y + 1 z ) 2 3 \large \left (x+\frac{1}{y}\right)^2+\left(y+\frac{1}{z}\right)^2+\left(z+\frac{1}{x}\right)^2 \ge \frac{(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2}{3} ..... (1)

By AM HM \text{AM}\ge \text{HM} ,

x + y + z 3 3 1 x + 1 y + 1 z 1 x + 1 y + 1 z 9 x + y + z 1 x + 1 y + 1 z 3 2 \frac{x+y+z}{3}\ge \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\implies \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \ge \frac{9}{x+y+z}\implies \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge \frac{3}{2}

Plugging it in 1 we get ,

( x + 1 y ) 2 + ( y + 1 z ) 2 + ( z + 1 x ) 2 ( 6 + 3 2 ) 2 3 = 18.75 \large \left (x+\frac{1}{y}\right)^2+\left(y+\frac{1}{z}\right)^2+\left(z+\frac{1}{x}\right)^2 \ge \frac{(6+\frac{3}{2})^2}{3} = \boxed{18.75}

You can just think of the application of Titu's Lemma as an application of Cauchy-Schwarz inequality on: ( x + 1 y , y + 1 z , z + 1 x ) , ( 1 , 1 , 1 ) \left( x+\frac{1}{y},y+\frac{1}{z},z+\frac{1}{x} \right),\left (1,1,1 \right)

Sam Bealing - 5 years, 1 month ago

Log in to reply

Obviously, the titu's lemma is just an extended version of the CS inequality. So the titu's llemma here gives an one line conclusion here. :)

Aditya Narayan Sharma - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...