Favourite fractions

Geometry Level 2

Find a tan θ \theta such that: cos 2 θ \theta = 6 5 \frac{6}{5} tan θ \theta .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lavisha Parab
Sep 20, 2014

I'm bad at formatting. Sorry for that. Using half angles, cos 2@ is (1-tan^2@)/(1+tan^2@) . Solve it n get tan @ as 0.5 n cos 2@ as 0.6.

Who imagined 1/2 and 3/5 share such a good relation?

Chew-Seong Cheong
Jan 24, 2015

cos 2 θ = 6 5 tan θ 2 cos 2 θ 1 = 6 5 tan θ 10 sec 2 θ 5 = 6 tan θ \cos {2\theta} = \frac{6}{5} \tan {\theta}\quad \Rightarrow 2\cos^2{\theta} - 1 = \frac {6}{5} \tan {\theta}\quad \Rightarrow \dfrac {10}{\sec^2{\theta} } - 5 = 6\tan {\theta}

10 1 + tan 2 θ 5 = 6 tan θ 10 5 5 tan 2 θ = 6 tan θ + 6 tan 3 θ \Rightarrow \dfrac {10}{1+\tan^2{\theta}} - 5 = 6 \tan {\theta}\quad \Rightarrow 10- 5 - 5\tan^2{\theta} = 6\tan {\theta} +6 \tan^3{\theta}

6 tan 3 θ + 5 tan 2 θ + 6 tan θ 5 = 0 \Rightarrow 6 \tan^3{\theta} + 5\tan^2{\theta} + 6\tan {\theta} - 5 = 0

( 2 tan θ 1 ) ( 3 tan 2 θ + 4 tan θ + 5 ) = 0 tan θ = 1 2 \Rightarrow (2 \tan {\theta} - 1)(3 \tan^2 {\theta} + 4 \tan {\theta} + 5) = 0 \quad \Rightarrow \tan {\theta} = \boxed{\frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...