Femibern

Calculus Level 4

Let s = 0 1 x 2 1 ln ( x ) d x . \large s=\int_0^1 \frac{x^2-1}{\ln (x)} dx. Find e s e^s .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Nov 23, 2017

I ( a ) = 0 1 x a 1 ln ( x ) d x \large \displaystyle I(a) = \int_0^1 \frac{x^a -1}{\ln(x)} dx

d I ( a ) d a = 0 1 x a ln ( x ) ln ( x ) d x \large \displaystyle \frac{dI(a)}{da} = \int_0^1 \frac{x^a \ln(x)}{\ln(x)} dx

d I ( a ) d a = 0 1 x a d x \large \displaystyle \frac{dI(a)}{da} = \int_0^1 x^a dx

d I ( a ) d a = 1 a + 1 \large \displaystyle \frac{dI(a)}{da} = \frac{1}{a+1}

I ( a ) = ln ( a + 1 ) + C \color{#20A900} \boxed{ \large \displaystyle I(a) = \ln(a+1) + C}

When a = 0 a = 0 :

I ( 0 ) = ln ( 1 ) + C = 0 1 x 0 1 ln ( x ) d x = 0 \large \displaystyle I(0) = \ln(1) + C = \int_0^1 \frac{x^0 -1}{\ln(x)} dx = 0

C = 0 \color{#20A900} \boxed{ \large \displaystyle C = 0}

Thus:

I ( a ) = ln ( a + 1 ) \color{#20A900} \boxed{ \large \displaystyle I(a) = \ln(a+1)}

s = I ( 2 ) = ln ( 3 ) \color{#20A900} \boxed{ \large \displaystyle s = I(2) = \ln(3)}

So:

e s = 3 \color{#3D99F6} \boxed{\large \displaystyle e^s = 3}

It should be clear that 0 1 x b 1 ln ( x ) d x = ln ( b + 1 ) \int_0^1 \frac{x^b-1}{\ln (x)} dx = \ln (b+1) converges for b > 1 b>-1 . In particular, 0 1 x 2 1 ln ( x ) d x = ln ( 3 ) \int_0^1 \frac{x^2-1}{\ln (x)} dx = \ln (3) which leads to the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...