Fermat Point?!?

Geometry Level 2

In A B C \triangle ABC , A B = 1 , A C = 2 , B C = 3 AB=1,AC=2,BC=\sqrt{3} .

M M is a point inside A B C \triangle ABC so that S M A B M A M B = S M B C M B M C = S M C A M C M A \dfrac{S_{\triangle MAB}}{\overrightarrow{MA} \cdot \overrightarrow{MB}}=\dfrac{S_{\triangle MBC}}{\overrightarrow{MB} \cdot \overrightarrow{MC}}=\dfrac{S_{\triangle MCA}}{\overrightarrow{MC} \cdot \overrightarrow{MA}} .

What is the value of ( M A + M B + M C ) 2 (MA+MB+MC)^2 ?

Note : S X Y Z S_{\triangle XYZ} denotes the area of X Y Z \triangle XYZ .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Oct 11, 2019

Let B B have coordinates ( 0 , 0 ) (0, 0) , A A have coordinates ( 0 , 1 ) (0, 1) , C C have coordinates ( 3 , 0 ) (\sqrt{3}, 0) , and M M have coordinates ( p , q ) (p, q) .

Then S M A B = 1 2 p S_{\triangle MAB} = \frac{1}{2}p , S M B C = 3 2 q S_{\triangle MBC} = \frac{\sqrt{3}}{2}q , and S M B C = 3 2 1 2 p 3 2 q S_{\triangle MBC} = \frac{\sqrt{3}}{2} - \frac{1}{2}p - \frac{\sqrt{3}}{2}q .

And M A = ( p , 1 q ) \overrightarrow{MA} = (-p, 1 - q) , M B = ( p , q ) \overrightarrow{MB} = (-p, -q) , and M C = ( 3 p , q ) \overrightarrow{MC} = (\sqrt{3} - p, -q) .

So M A M B = 2 p 2 + 2 q 2 2 q \overrightarrow{MA} \cdot \overrightarrow{MB} = 2p^2 + 2q^2 - 2q , M B M C = 2 p 2 + 2 q 2 2 3 p \overrightarrow{MB} \cdot \overrightarrow{MC} = 2p^2 + 2q^2 - 2\sqrt{3}p , and M C M A = 2 p 2 + 2 q 2 2 3 p 2 q \overrightarrow{MC} \cdot \overrightarrow{MA} = 2p^2 + 2q^2 - 2\sqrt{3}p - 2q .

Substituting into the given equations gives 1 2 p 2 p 2 + 2 q 2 2 q = 3 2 q 2 p 2 + 2 q 2 2 3 p = 3 2 1 2 p 3 2 q 2 p 2 + 2 q 2 2 3 p 2 q \frac{\frac{1}{2}p}{2p^2 + 2q^2 - 2q} = \frac{\frac{\sqrt{3}}{2}q}{2p^2 + 2q^2 - 2\sqrt{3}p} = \frac{\frac{\sqrt{3}}{2} - \frac{1}{2}p - \frac{\sqrt{3}}{2}q}{2p^2 + 2q^2 - 2\sqrt{3}p - 2q} which solves to p = 3 7 p = \frac{\sqrt{3}}{7} and q = 2 7 q = \frac{2}{7} .

Then A M = 2 7 AM = \frac{2}{\sqrt{7}} , B M = 1 7 BM = \frac{1}{\sqrt{7}} , and C M = 4 7 CM = \frac{4}{\sqrt{7}} , so that ( A M + B M + C M ) 2 = 7 (AM + BM + CM)^2 = \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...