Fermat to infinity

Algebra Level 5

( 1 1 a 1 ) ( 1 1 a 2 ) ( 1 1 a 3 ) ( 1 1 a 4 ) \left(1-\frac{1}{a_1}\right)\left(1-\frac{1}{a_2}\right)\left(1-\frac{1}{a_3}\right)\left(1-\frac{1}{a_4}\right) \cdots

Let a 1 = 17 4 a_1=\frac{17}{4} and a n = a n 1 2 2 a_n=a_{n-1}^2-2 for n 2 n \geq 2 .

If the infinite product above can be expressed as A B \frac AB , where A A and B B are coprime positive integers, then what is the value of A + B A+B ?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jason Martin
Nov 13, 2015

There are many solutions, but the one I found uses properties of Fermat numbers.

First note that a n = a n 1 2 2 a n + 1 = ( a n 1 + 1 ) ( a n 1 1 ) a n 1 1 = a n + 1 a n 1 + 1 a_n=a_{n-1}^2-2 \Rightarrow a_n+1=(a_{n-1}+1)(a_{n-1}-1) \Rightarrow a_{n-1}-1=\frac{a_n+1}{a_{n-1}+1} . We will use this later.

Second, I claim a n = 2 2 n + 1 + 1 2 2 n a_n=\frac{2^{2^{n+1}}+1}{2^{2^{n}}} for all n 1 n \geq 1 , which we prove with mathematical induction. For n = 1 n=1 , clearly 17 4 = a 1 = 2 2 1 + 1 + 1 2 2 1 \frac{17}{4}=a_1=\frac{2^{2^{1+1}}+1}{2^{2^1}} . Now assume a k = 2 2 k + 1 + 1 2 2 k a_k=\frac{2^{2^{k+1}}+1}{2^{2^{k}}} for some k 1 k \geq 1 , and consider a k + 1 a_{k+1} . By the defining recursion, a k + 1 = a k 2 2 = ( 2 2 k + 1 + 1 2 2 k ) 2 2 = 2 2 k + 2 + 2 2 2 k + 1 + 1 2 2 k + 1 2 2 2 k + 1 2 2 k + 1 = 2 2 k + 2 + 1 2 2 k + 1 a_{k+1}=a_k^2-2=(\frac{2^{2^{k+1}}+1}{2^{2^{k}}})^2-2=\frac{2^{2^{k+2}}+2 \cdot 2^{2^{k+1}}+1}{2^{2^{k+1}}}-\frac{2 \cdot 2^{2^{k+1}}}{2^{2^{k+1}}}=\frac{2^{2^{k+2}}+1}{2^{2^{k+1}}} , as desired. Therefore, a n = 2 2 n + 1 + 1 2 2 n a_n=\frac{2^{2^{n+1}}+1}{2^{2^{n}}} for all n 1 n \geq 1 .

Finally, the product ( 1 1 a 1 ) ( 1 1 a 2 ) ( 1 1 a 3 ) ( 1 1 a 4 ) = ( a 1 1 a 1 ) ( a 2 1 a 2 ) ( a 3 1 a 3 ) ( a 4 1 a 4 ) = ( a 2 + 1 a 1 + 1 a 3 + 1 a 2 + 1 a 4 + 1 a 3 + 1 a 5 + 1 a 4 + 1 ) ( 1 a 1 a 2 a 3 a 4 ) = lim N ( a N + 1 + 1 a 1 + 1 ) ( 2 2 1 2 2 2 2 2 3 2 2 4 2 2 N ( 2 2 2 + 1 ) ( 2 2 3 + 1 ) ( 2 2 4 + 1 ) ( 2 2 5 + 1 ) ( 2 2 N + 1 + 1 ) ) (1-\frac{1}{a_1})(1-\frac{1}{a_2})(1-\frac{1}{a_3})(1-\frac{1}{a_4}) \cdots =(\frac{a_1-1}{a_1})(\frac{a_2-1}{a_2})(\frac{a_3-1}{a_3})(\frac{a_4-1}{a_4}) \cdots = \\ (\frac{a_2+1}{a_1+1}\frac{a_3+1}{a_2+1}\frac{a_4+1}{a_3+1}\frac{a_5+1}{a_4+1} \cdots )(\frac{1}{a_1a_2a_3a_4 \cdots })=\lim_{N\to\infty} (\frac{a_{N+1}+1}{a_1+1})(\frac{2^{2^1}2^{2^2}2^{2^3}2^{2^4} \cdots 2^{2^N}}{(2^{2^2}+1)(2^{2^3}+1)(2^{2^4}+1)(2^{2^5}+1) \cdots (2^{2^{N+1}}+1)}) .
At this point we use the fact for Fermat numbers that ( 2 2 0 + 1 ) ( 2 2 1 + 1 ) ( 2 2 2 + 1 ) ( 2 2 n 1 + 1 ) = 2 2 n 1 (2^{2^0}+1)(2^{2^1}+1)(2^{2^2}+1) \cdots (2^{2^{n-1}}+1)=2^{2^n}-1 . Therefore, we get

lim N 4 21 ( 2 2 N + 2 + 1 2 2 N + 1 + 1 ) ( 2 2 N + 1 1 2 2 N + 2 1 ) ( 15 2 ) = lim N 5 7 ( 2 2 N + 2 + 2 2 N + 1 + 1 2 2 N + 2 1 ) = 5 7 \lim_{N\to\infty} \frac{4}{21}(\frac{2^{2^{N+2}}+1}{2^{2^{N+1}}}+1)(\frac{2^{2^{N+1}-1}}{2^{2^{N+2}}-1})(\frac{15}{2})= \lim_{N\to\infty} \frac{5}{7} (\frac{2^{2^{N+2}}+2^{2^{N+1}}+1}{2^{2^{N+2}}-1})=\frac{5}{7} .
So A + B = 5 + 7 = 12 A+B=5+7=12 .

Well, this is beautiful. I used the cosh ( x ) \cosh(x) approach. I don't know but it feels more simple and convincing to me.

Kartik Sharma - 5 years, 6 months ago

Log in to reply

Excellent idea. I've seen many solutions to similar problems, and I decided to post my first solution.

Jason Martin - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...