Feuerbach's Foil

Geometry Level 5

In a unit circle, two fixed endpoints of the diameter and a point selected on the circumference forms a triangle. The point on the circumference is rotated counterclockwise, so that the locus of the Feuerbach point X 11 \operatorname{X}_{11} forms a double-bulb-shaped curve (marked in blue on the animation). It can be shown that the area enclosed by the locus is equal to

A B ( C D π ) \dfrac{A}{B}(C - D\pi)

where A , B , C , D A,B,C,D are positive integers and gcd ( A , B ) = gcd ( C , D ) = 1 \gcd (A,B) = \gcd (C,D) = 1 . Find the value of A + B + C + D A + B + C + D .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 11, 2021

Bizarrely, this problem and mine seem to have been posted almost simultaneously!


If we let B A C = θ \angle BAC = \theta for 0 < θ < 1 2 π 0 < \theta < \tfrac12\pi (so that C C is in the upper semicircle), then the vertices of the triangle A B C ABC are A ( 1 , 0 ) B ( 1 , 0 ) C ( cos 2 θ , sin 2 θ ) A\; (-1,0) \hspace{1cm} B\;(1,0) \hspace{1cm} C\; (\cos2\theta,\sin2\theta) As has been shown in previous problems of this type, the incentre I I of A B C ABC has coordinates I ( cos θ sin θ , cos θ + sin θ 1 ) I\; (\cos\theta - \sin\theta, \cos\theta + \sin\theta - 1) (note that cos θ + sin θ 1 \cos\theta + \sin\theta - 1 is the inradius). Since A B C ABC is right-angled, the orthocentre of A B C ABC is the vertex C C , and so the nine-point centre N N is the midpoint of O C OC , and hence has coordinates N ( 1 2 cos 2 θ , 1 2 sin 2 θ ) N\; \big(\tfrac12\cos2\theta,\tfrac12\sin2\theta\big) We calculate that I N = 1 2 ( 3 2 cos θ 2 sin θ ) IN = \tfrac12(3 - 2\cos\theta - 2\sin\theta) , and so (since the radius of the nine-point circle is half that of the outcircle, namely 1 2 \tfrac12 ) O F e = O N + 1 3 2 cos θ 2 sin θ N I \overrightarrow{OFe} \; = \; \overrightarrow{ON} + \frac{1}{3 - 2\cos\theta-2\sin\theta}\overrightarrow{NI} It is useful at this stage to introduce the coordinate u = θ 1 4 π u = \theta - \tfrac14\pi , so that F e Fe has coordinates ( X ( u ) , Y ( u ) ) \big(X(u),Y(u)\big) , where X ( u ) = 2 sin u ( 2 cos 2 u 2 cos u 1 ) 3 2 2 cos u Y ( u ) = 2 sin 2 u ( 2 cos u 1 ) 3 2 2 cos u X(u) \; = \; \frac{\sqrt{2}\sin u(2\cos^2u - \sqrt{2}\cos u - 1)}{3 - 2\sqrt{2}\cos u} \hspace{2cm} Y(u) \; = \; \frac{2\sin^2u(\sqrt{2}\cos u - 1)}{3 - 2\sqrt{2}\cos u} We find that X ( u ) Y ( u ) = Z ( cos u ) X'(u)Y(u) \,=\, Z(\cos u) , where Z ( c ) = 2 ( 1 c 2 ) ( 2 c 1 ) ( 10 15 2 c 4 c 2 + 22 2 c 3 16 c 4 ) ( 3 2 2 c ) 3 = 15 16 + 1 4 2 c + 17 8 c 2 3 4 2 c 3 2 c 4 + 1 64 ( 3 2 2 c ) 3 5 32 ( 3 2 2 c ) 2 + 41 64 ( 3 2 2 c ) \begin{aligned} Z(c) & = \; \frac{2(1-c^2)(\sqrt{2}c-1)(10 - 15 \sqrt{2} c - 4 c^2 + 22 \sqrt{2} c^3 - 16 c^4)}{(3 -2\sqrt{2}c)^3} \\ & = \; -\tfrac{15}{16} + \tfrac{1}{4}\sqrt{2}c + \tfrac{17}{8} c^2 - \tfrac{3}{4}\sqrt{2} c^3 - 2 c^4 + \frac{1}{64(3 - 2 \sqrt{2} c)^3} - \frac{5}{ 32 (3 - 2 \sqrt{2}c)^2} + \frac{41}{64 (3 - 2 \sqrt{2}c)} \end{aligned} Thus the desired area is Δ \Delta , where 1 2 Δ = 1 4 π 1 4 π Z ( cos u ) d u = 1 4 π 1 4 π ( 15 16 + 1 4 2 cos u + 17 8 cos 2 u 3 4 2 cos 3 u 2 cos 4 u ) d u + 41 64 Q 1 5 32 Q 2 + 1 64 Q 3 = 11 16 5 16 π + 41 64 Q 1 5 32 Q 2 + 1 64 Q 3 \begin{aligned} -\tfrac12\Delta & = \; \int_{-\frac14\pi}^{\frac14\pi} Z(\cos u)\,du \\ & = \; \int_{-\frac14\pi}^{\frac14\pi}\left( -\tfrac{15}{16} + \tfrac{1}{4}\sqrt{2}\cos u + \tfrac{17}{8} \cos^2u - \tfrac{3}{4}\sqrt{2}\cos^3u - 2 \cos^4u \right)\,du + \tfrac{41}{64}Q_1 - \tfrac{5}{32}Q_2 + \tfrac{1}{64}Q_3 \\ & = \; -\tfrac{11}{16} - \tfrac{5}{16}\pi + \tfrac{41}{64}Q_1 - \tfrac{5}{32}Q_2 + \tfrac{1}{64}Q_3 \end{aligned} where Q j = 1 4 π 1 4 π d u ( 3 2 2 cos u ) j j N { 0 } Q_j \; = \; \int_{-\frac14\pi}^{\frac14\pi} \frac{du}{(3 -2\sqrt{2}\cos u)^j} \hspace{2cm} j \in \mathbb{N} \cup \{0\} Now, integrating by parts, Q j = 3 Q j + 1 2 2 1 4 π 1 4 π cos u ( 3 2 2 cos u ) j + 1 d u = 3 Q j + 1 2 2 { [ sin u ( 3 2 2 cos u ) j + 1 ] 1 4 π 1 4 π + 2 2 ( j + 1 ) 1 4 π 1 4 π sin 2 u ( 3 2 2 cos u ) j + 2 d u } = 3 Q j + 1 4 8 ( j + 1 ) Q j + 2 + 8 ( j + 1 ) 1 4 π 1 4 π cos 2 u ( 3 2 2 cos u ) j + 2 d u = 3 Q j + 1 4 8 ( j + 1 ) Q j + 2 + ( j + 1 ) 1 4 π 1 4 π 9 6 ( 3 2 2 cos u ) + ( 3 2 2 cos u ) 2 ( 3 2 2 cos u ) j + 2 d u = 3 Q j + 1 4 8 ( j + 1 ) Q j + 2 + ( j + 1 ) ( 9 Q j + 2 6 Q j + 1 + Q j ) \begin{aligned} Q_j & = \; 3Q_{j+1} - 2\sqrt{2}\int_{-\frac14\pi}^{\frac14\pi} \frac{\cos u}{(3 - 2\sqrt{2}\cos u)^{j+1}}\,du \\ & = \; 3Q_{j+1} - 2\sqrt{2}\left\{ \left[\frac{\sin u}{(3 - 2\sqrt{2}\cos u)^{j+1}}\right]_{-\frac14\pi}^{\frac14\pi} + 2\sqrt{2}(j+1) \int_{-\frac14\pi}^{\frac14\pi}\frac{\sin^2u}{(3 - 2\sqrt{2}\cos u)^{j+2}}\,du\right\} \\ & = \; 3Q_{j+1} - 4 - 8(j+1)Q_{j+2} + 8(j+1)\int_{-\frac14\pi}^{\frac14\pi} \frac{\cos^2u}{(3 - 2\sqrt{2}\cos u)^{j+2}}\,du \\ & = \; 3Q_{j+1} - 4 - 8(j+1)Q_{j+2} + (j+1)\int_{-\frac14\pi}^{\frac14\pi} \frac{9 - 6(3 - 2\sqrt{2}\cos u) + (3 - 2\sqrt{2}\cos u)^2}{(3 - 2\sqrt{2}\cos u)^{j+2}}\,du \\ & = \; 3Q_{j+1} - 4 - 8(j+1)Q_{j+2} + (j+1)\big(9Q_{j+2} - 6Q_{j+1} + Q_j\big) \end{aligned} so we obtain the recurrence relation j Q j 3 ( 2 j + 1 ) Q j + 1 + ( j + 1 ) Q j + 2 = 4 j 0 jQ_j - 3(2j+1)Q_{j+1} + (j+1)Q_{j+2} \; = \; 4 \hspace{2cm} j \ge 0 Now Q 0 = 1 2 π Q_0 = \tfrac12\pi and Q 1 = 2 0 1 4 π d u 3 2 2 cos u = 4 0 2 1 d t ( 3 2 2 ) + ( 3 + 2 2 ) t 2 = 4 ( 3 2 2 ) 0 2 1 d t ( 3 2 2 ) 2 + t 2 = 4 tan 1 ( 2 + 1 ) = 3 2 π Q_1 \; = \; 2\int_0^{\frac14\pi} \frac{du}{3 -2\sqrt{2}\cos u} \; = \; 4 \int_0^{\sqrt{2}-1} \frac{dt}{(3 - 2\sqrt{2}) + (3 + 2\sqrt{2})t^2} \; = \; 4(3 - 2\sqrt{2})\int_0^{\sqrt{2}-1} \frac{dt}{(3 - 2\sqrt{2})^2 + t^2} \; = \; 4\tan^{-1}\big(\sqrt{2}+1\big) \; = \; \tfrac32\pi using the substitution t = tan 1 2 θ t = \tan\tfrac12\theta . Thus we deduce that Q 2 = 4 + 9 2 π Q_2 = 4 + \tfrac92\pi and Q 3 = 20 + 39 2 π Q_3 = 20 + \tfrac{39}{2}\pi , and hence Δ = 11 8 + 5 8 π 41 32 Q 1 + 5 16 Q 2 1 32 Q 3 = 2 1 2 π = 1 2 ( 4 π ) \Delta \; = \; \tfrac{11}{8} + \tfrac58\pi - \tfrac{41}{32}Q_1 + \tfrac{5}{16}Q_2 - \tfrac{1}{32}Q_3\; = \; 2 - \tfrac12\pi \; = \; \tfrac12(4-\pi) making the answer 1 + 2 + 4 + 1 = 8 1 + 2 + 4 + 1 = \boxed{8} .

What a coincidence! I noticed from my area (I live in United States), the same type of problem (but posted after mine) appeared!

Michael Huang - 1 month ago

Log in to reply

To avoid repetition, I am going to post one about X 6 X_6 later on today.

Mark Hennings - 1 month ago

Log in to reply

Goodie good! Looks like we all have some interest in looking at loci!

Michael Huang - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...