Feynman integration

Calculus Level 2

0 1 x 2 1 ln x d x = ln a \large \int _0^1 \frac { x^2 -1 }{ \ln x } dx = \ln a

The equation above holds true for positive integer a a . What does a 2 a-2 equal?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Similar solution with @Will McGlaughlin 's

Let

I ( u ) = 0 1 x u 1 ln x d x I ( u ) u = 0 1 ln x x u ln x d x = 0 1 x u d x = 1 u + 1 I ( u ) = 1 u + 1 d u = ln ( u + 1 ) + C where C is the constant of integration. I ( 0 ) = ln ( 0 + 1 ) + C = 0 Note that I ( 0 ) = 0 C = 0 I ( u ) = ln ( u + 1 ) I ( 2 ) = ln 3 \begin{aligned} I(u) & = \int_0^1 \frac {x^u-1}{\ln x} dx \\ \frac {\partial I(u)}{\partial u} & = \int_0^1 \frac {\ln x \cdot x^u}{\ln x} dx \\ & = \int_0^1 x^u \ dx \\ & = \frac 1{u+1} \\ \implies I(u) & = \int \frac 1{u+1} du \\ & = \ln (u+1) + C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ I(0) & = \ln (0+1)+C = 0 & \small \color{#3D99F6} \text{Note that } I(0) = 0 \implies C = 0 \\ \implies I(u) & = \ln (u+1) \\ \implies I(2) & = \ln 3 \end{aligned}

Therefore, a 2 = 3 2 = 1 a-2 = 3-2=\boxed{1} .

Will McGlaughlin
May 3, 2018

Let the integral 0 1 x b 1 ln x d x = I ( b ) \int _{ 0 }^{ 1 }{ \frac { { x }^{ b }-1 }{ \ln { x } } } dx = I(b)

I ( b ) = 0 1 d d b ( x b 1 ln x ) d x I'(b)=\int _{ 0 }^{ 1 }{ \frac { d }{ db } (\frac { { x }^{ b }-1 }{ \ln { x } } ) } dx

d d b ( x b 1 ) = l n ( x ) x b \frac { d }{ db } ({ x }^{ b }-1)=ln(x){ x }^{ b }

Therefore I ( b ) = 0 1 x b d x I'(b)=\int _{ 0 }^{ 1 }{ { x }^{ b } } dx

I ( b ) = x b + 1 b + 1 t o x = 0 f r o m x = 1 I'(b)={ \frac { { x }^{ b+1 } }{ b+1 } }_{ to\quad x=0 }^{ from\quad x=1 }

I ( b ) = 1 b + 1 I'(b)=\frac { 1 }{ b+1 }

Taking the integral of both sides we reach;

I ( b ) = ln ( b + 1 ) + c I(b)=\ln { (b+1) } +c

We know that 0 1 x b 1 ln x d x = I ( b ) = ln ( b + 1 ) + c \int _{ 0 }^{ 1 }{ \frac { { x }^{ b }-1 }{ \ln { x } } } dx = I(b)=\ln { (b+1) } +c

Let b = 0 b=0

We get 0 1 x 0 1 ln x d x = I ( 0 ) = ln ( 0 + 1 ) + c \int _{ 0 }^{ 1 }{ \frac { { x }^{ 0 }-1 }{ \ln { x } } } dx = I(0)=\ln { (0+1) } +c

0 = ln ( 1 ) + c 0=\ln { (1) } +c

c = 0 c=0

I ( b ) = ln ( b + 1 ) I(b)=\ln { (b+1) }

I ( 2 ) = ln ( 2 + 1 ) I(2)=\ln { (2+1) }

I ( 2 ) = ln ( 3 ) I(2)=\ln { (3) }

a = 3 a=3

a 2 = 1 a-2=\boxed{1}

Vincent Moroney
Jun 23, 2018

Alternatively to the differentiation under the integral sign technique, we can convert this to a double integral. Notice 0 2 x t d t = x 2 1 ln ( x ) . \int_0^2 x^t \,dt = \frac{x^2 - 1}{\ln(x)}. Let I I denote the integral in question, we can rewrite I I equivalently as I = 0 1 0 2 x t d t d x I = \int_0^1 \int_0^2 x^t \,dt \, dx and we can utilize Fubini's Theorem to interchange the order of integration to give I = 0 2 0 1 x t d x d t I = \int_0^2 \int_0^1 x^t\,dx\,dt which gives I = 0 2 1 t + 1 d t = ln ( 3 ) I = \int_0^2 \frac{1}{t+1}\,dt = \ln(3) thus a 2 = 1 . \boxed{ a-2 = 1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...