Feynman?

Calculus Level 5

0 π / 2 x cos x 1 + sin 2 x d x = ln A ( B + C ) D \int_0^{\pi/2} \frac{x\cos x}{1+\sin^2 x} dx=\frac{\ln^A (\sqrt{B}+C)}D

The equation above holds true for positive integers A A , B B , C C , and D D . Find min ( A + B + C + D ) \min\left(A+B+C+D\right) .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohan Shinde
Sep 1, 2019

Hint: \color{#20A900}{\text{Hint:}}

First Integrate by parts and then use Legendre Chi Function \color{#69047E}{\mathbf{\text{Legendre Chi Function}}}

Edit: \color{#D61F06}{\text{Edit:}}

Using Integration by Parts we get that 0 π / 2 x cos x 1 + sin 2 x d x \displaystyle \int_0^{\pi/2}\frac{x\cos x}{1+\sin^2x}dx = π 2 8 0 π / 2 arctan ( sin x ) d x =\displaystyle \frac{\pi^2}{8}-\int_0^{\pi/2} \arctan(\sin x)dx = π 2 8 2 χ 2 ( 2 1 ) =\displaystyle \frac{\pi^2}{8}-2\chi_2\left(\sqrt{2}-1\right)

From here we have that χ 2 ( 2 1 ) = π 2 16 ln 2 ( 2 + 1 ) 4 \displaystyle \chi_2\left(\sqrt{2}-1\right)=\frac{\pi^2}{16}-\frac{\ln^2\left(\sqrt{2}+1\right)}{4}

And hence we get 0 π / 2 x cos x 1 + sin 2 x d x = ln 2 ( 2 + 1 ) 2 \displaystyle \int_0^{\pi/2}\frac{x\cos x}{1+\sin^2x}dx=\frac{\ln^2\left(\sqrt{2}+1\right)}{2}

Can I view the solution somewhere?

Deepima Pathania - 1 year, 7 months ago

Thank you very much for your answers, which deepened my understanding of the Legendre chi function. https://en.wikipedia.org/wiki/Legendre chi function http://mathworld.wolfram.com/LegendresChi-Function.html

Wang xingyu - 1 year, 7 months ago

Please do this sum in a simple manner without using legendre chi function

Venkataramana gandu - 1 year, 4 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...