FGCU Math Competition Problem

Calculus Level 3

2 2 1 + x 2 1 + 2 x d x = ? \large \int_{-2}^2 \frac{1+x^2}{1+2^x} dx = ?

Round answer to 2 decimal places.


The answer is 4.67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 15, 2017

Relevant wiki: Integration Tricks

I = 2 2 1 + x 2 1 + 2 x d x By identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 2 2 ( 1 + x 2 1 + 2 x + 1 + x 2 1 + 2 x ) d x = 1 2 2 2 ( 1 + x 2 1 + 2 x + 2 x ( 1 + x 2 ) 2 x + 1 ) d x = 1 2 2 2 ( 1 + x 2 ) d x Note that the integrand is even. = 0 2 ( 1 + x 2 ) d x = x + x 3 3 0 2 = 2 + 8 3 4.67 \begin{aligned} I & = \int_{-2}^2 \frac {1+x^2}{1+2^x}dx & \small \color{#3D99F6} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-2}^2 \left(\frac {1+x^2}{1+2^x} + \frac {1+x^2}{1+2^{-x}} \right) dx \\ & = \frac 12 \int_{-2}^2 \left(\frac {1+x^2}{1+2^x} + \frac {2^x(1+x^2)}{2^x+1} \right) dx \\ & = \frac 12 \int_{-2}^2 \left(1+x^2 \right) dx & \small \color{#3D99F6} \text{Note that the integrand is even.} \\ & = \int_0^2 \left(1+x^2 \right) dx \\ & = x + \frac {x^3}3 \ \bigg|_0^2 \\ & = 2 + \frac 83 \\ & \approx \boxed{4.67} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...