Fibonacci Decimals

Algebra Level 4

1 1 0 0 + 1 1 0 1 + 2 1 0 2 + 3 1 0 3 + 5 1 0 4 + 8 1 0 5 + 13 1 0 6 + \displaystyle \frac{1}{10^0} + \frac{1}{10^1} + \frac{2}{10^2} + \frac{3}{10^3} + \frac{5}{10^4} + \frac{8}{10^5} + \frac{13}{10^6} + \cdots

If the value of the sum above can be expressed as m n \dfrac mn for positive coprime integers m m and n n , find n + 1 m \dfrac{n + 1}{\sqrt{m}} .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Fibonacci Sequence

S = 1 1 0 0 + 1 1 0 1 + 2 1 0 2 + 3 1 0 3 + 5 1 0 4 + 8 1 0 5 + 13 1 0 6 + = n = 1 F n 1 0 n 1 F n is the n th Fibonacci number. = 10 n = 0 F n 1 0 n = 10 ( F 0 + F 1 10 + n = 2 F n 1 0 n ) = 10 ( 1 10 + n = 2 F n 1 + F n 2 1 0 n ) = 10 ( 1 10 + n = 2 F n 1 1 0 n + n = 2 F n 2 1 0 n ) = 10 ( 1 10 + 1 10 n = 0 F n 1 0 n + 1 100 n = 0 F n 1 0 n ) = 1 + 1 10 S + 1 100 S \begin{aligned} S & = \small \frac 1{10^0} + \frac 1{10^1} + \frac 2{10^2} + \frac 3{10^3} + \frac 5{10^4} + \frac 8{10^5} + \frac {13}{10^6} + \cdots \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac {\color{#3D99F6}F_n}{10^{n-1}} & \small \color{#3D99F6} F_n \text{ is the }n \text{th Fibonacci number.} \\ & = 10 \sum_{\color{#D61F06}n=0}^\infty \frac {F_n}{10^n} \\ & = 10 \left(F_0 + \frac {F_1}{10} + \sum_{\color{#3D99F6}n=2}^\infty \frac {F_n}{10^n} \right) \\ & = 10 \left(\frac 1{10} + \sum_{\color{#3D99F6}n=2}^\infty \frac {F_{n-1}+F_{n-2}}{10^n} \right) \\ & = 10 \left(\frac 1{10} + \sum_{\color{#3D99F6}n=2}^\infty \frac {F_{n-1}}{10^n} + \sum_{\color{#3D99F6}n=2}^\infty \frac {F_{n-2}}{10^n}\right) \\ & = 10 \left(\frac 1{10} + \frac 1{10} \sum_{\color{#D61F06}n=0}^\infty \frac {F_n}{10^n} + \frac 1{100} \sum_{\color{#D61F06}n=0} ^\infty \frac {F_n}{10^n}\right) \\ & = 1 + \frac 1{10} S + \frac 1{100} S \end{aligned}

89 100 S = 1 S = 100 89 n + 1 m = 89 + 1 100 = 9 \begin{aligned} \implies \frac {89}{100} S & = 1 \\ S & = \frac {100}{89} \\ \implies \frac {n+1}{\sqrt m} & = \frac {89+1}{\sqrt{100}} = \boxed{9} \end{aligned}

I somehow deleted my solution and now I can't post it again, so I'll just write it here:

Let the sum be S:

S = 1 + 1 10 + 2 1 0 2 + 3 1 0 3 + 5 1 0 4 + 8 1 0 5 + . . . S=1+\frac{1}{10}+\frac{2}{10^{2}}+\frac{3}{10^{3}}+\frac{5}{10^{4}}+\frac{8}{10^{5}}+...

1 10 S = 1 10 + 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + 5 1 0 5 + . . . \frac{1}{10}S=\frac{1}{10}+\frac{1}{10^{2}}+\frac{2}{10^{3}}+\frac{3}{10^{4}}+\frac{5}{10^{5}}+...

9 10 S = 1 + 1 10 1 10 + 2 1 0 2 1 1 0 2 + 3 1 0 3 2 1 0 3 + 5 1 0 4 3 1 0 4 + 8 1 0 5 5 1 0 5 + . . . = 1 + 1 1 0 2 + 1 1 0 3 + 2 1 0 4 + 3 1 0 5 + 5 1 0 6 + . . . \begin{aligned} \Rightarrow \frac{9}{10}S & =1+\underbrace{\frac{1}{10}-\frac{1}{10}}+\underbrace{\frac{2}{10^{2}}-\frac{1}{10^{2}}}+\underbrace{\frac{3}{10^{3}}-\frac{2}{10^{3}}}+\underbrace{\frac{5}{10^{4}}-\frac{3}{10^{4}}}+\underbrace{\frac{8}{10^{5}}-\frac{5}{10^{5}}}+...\\ & =1+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\frac{2}{10^{4}}+\frac{3}{10^{5}}+\frac{5}{10^{6}}+...\end{aligned}

At this moment note that 1 1 0 2 + 1 1 0 3 + 2 1 0 4 + 3 1 0 5 + 5 1 0 6 + . . . = S 1 0 2 \frac{1}{10^{2}}+\frac{1}{10^{3}}+\frac{2}{10^{4}}+\frac{3}{10^{5}}+\frac{5}{10^{6}}+...=\frac{S}{10^{2}} .

9 10 S = 1 + S 1 0 2 89 100 S = 1 S = 100 89 m = 100 , n = 89 \begin{aligned} & \Rightarrow \frac{9}{10}S=1+\frac{S}{10^{2}} \\ & \Rightarrow \frac{89}{100}S=1 \\ & \Rightarrow S=\frac{100}{89} \\ & \Rightarrow m=100, n=89 \end{aligned}

Now, n + 1 m = 90 10 = 9 \frac{n+1}{\sqrt{m}}=\frac{90}{10}=\boxed{9} .

Uros Stojkovic - 3 years, 10 months ago
Marco Brezzi
Aug 8, 2017

Using Binet's Formula

F n = ( 1 + 5 2 ) n ( 1 5 2 ) n 5 F_n=\dfrac{\left(\dfrac{1+\sqrt{5}}{2}\right)^n-\left(\dfrac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}

The required sum is

S = n = 0 F n 1 0 n 1 = 1 5 n = 0 1 1 0 n 1 [ ( 1 + 5 2 ) n ( 1 5 2 ) n ] = 10 5 n = 0 ( 1 + 5 20 ) n ( 1 5 20 ) n = 10 5 ( 1 1 1 + 5 20 + 1 1 1 5 20 ) = 100 89 \begin{aligned} S &=\sum_{n=0}^{\infty} \dfrac{F_n}{10^{n-1}}\\ & = \dfrac{1}{\sqrt{5}}\sum_{n=0}^{\infty} \dfrac{1}{10^{n-1}}\cdot \left[\left(\dfrac{1+\sqrt{5}}{2}\right)^n-\left(\dfrac{1-\sqrt{5}}{2}\right)^n\right]\\ & = \dfrac{10}{\sqrt{5}}\sum_{n=0}^{\infty} \left(\dfrac{1+\sqrt{5}}{20}\right)^n-\left(\dfrac{1-\sqrt{5}}{20}\right)^n\\ & = \dfrac{10}{\sqrt{5}}\left(\cfrac{1}{1-\frac{1+\sqrt{5}}{20}}+\cfrac{1}{1-\frac{1-\sqrt{5}}{20}}\right)=\dfrac{100}{89} \end{aligned}

Making the answer

89 + 1 100 = 9 \dfrac{89+1}{\sqrt{100}}=\boxed{9}

let

F 0 = 1 F_0=1

F 1 = 1 F_1=1

F n = F n 1 + F n 2 F_n=F_{n-1}+F_{n-2}

P ( x ) = F 0 + F 1 x + F 2 x 2 + . . . . P(x)=F_0+F_1x+F_2x^2+....

Then we have

( 1 x x 2 ) P ( x ) = F 0 + ( F 1 F 0 ) x + ( F 2 F 1 F 0 ) x 2 + ( F 3 F 2 F 1 ) x 3 + . . . (1-x-x^2)P(x)=F_0+(F_1-F_0)x+(F_2-F_1-F_0)x^2+(F_3-F_2-F_1)x^3+...

Every term except the constant is zero so we are left with

( 1 x x 2 ) P ( x ) = F 0 = 1 (1-x-x^2)P(x)=F_0=1

P ( x ) = 1 1 x x 2 P(x)=\frac{1}{1-x-x^2}

Our desired value is simply

P ( 1 / 10 ) = 100 / 89 P(1/10)=100/89

Thus

m = 100 n = 89 m=100 n=89

Giving our solution as

n + 1 100 = 90 10 = 9 \frac{n+1}{\sqrt{100}}=\frac{90}{10}=9

Nice use of the Fibonacci generating function!

Zach Abueg - 3 years, 10 months ago

how did you get the 5th equation?

Vincentpaul Fadri - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...