Fibonacci Fraction

Algebra Level 5

i = 1 4302 ( 3 + ( 1 ) i ) F i i = 1 2151 F 2 i 2 + i = 1 1434 F 3 i = ? \dfrac{\displaystyle\sum_{i=1}^{4302}(3+(-1)^{i})F_{i}}{\displaystyle\sum_{i=1}^{2151}\frac{F_{2i}}{2}+\displaystyle\sum_{i=1}^{1434}F_{3i}} =\ ?

Notation: F n F_n denotes the n n th Fibonacci number that is defined as F 1 = 1 F_1=1 , F 2 = 1 F_2 = 1 , and F n = F n 1 + F n 2 F_n = F_{n-1} + F_{n-2} for n 3 n \ge 3 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 30, 2020

We can easily prove by induction that

i = 1 n F 2 i 1 = F 2 n , i = 1 n F 2 i = F 2 n + 1 1 , and i = 1 n F 3 i = F 3 n + 2 1 2 \sum_{i=1}^n F_{2i-1} = F_{2n}, \quad \sum_{i=1}^n F_{2i} = F_{2n+1} - 1, \text{ and } \sum_{i=1}^n F_{3i} = \frac {F_{3n+2} - 1}2

Let n = 717 n=717 ; then 2 n = 1434 2n = 1434 , 3 n = 2151 3n = 2151 , and 6 n = 4302 6n=4302 . And

i = 1 6 n ( 3 + ( 1 ) i ) F i i = 1 3 n 1 2 F 2 i + i = 1 2 n F 3 i = 2 i = 1 3 n F 2 i 1 + 4 i = 1 3 n F 2 i 1 2 i = 1 3 n F 2 i + i = 1 2 n F 3 i = 2 F 6 n + 4 F 6 n + 1 4 1 2 F 6 n + 1 1 2 + 1 2 F 6 n + 2 1 2 = 4 F 6 n + 8 F 6 n + 1 8 F 6 n + 1 + F 6 n + 2 2 = 4 F 6 n + 4 F 6 n + 1 + 4 F 6 n + 1 8 F 6 n + 1 + F 6 n + 2 2 = 4 F 6 n + 1 + 4 F 6 n + 2 8 F 6 n + 1 + F 6 n + 2 2 = 4 \begin{aligned} \frac {\sum_{i=1}^{6n}(3+(-1)^i)F_i}{\sum_{i=1}^{3n}\frac 12 F_{2i} + \sum_{i=1}^{2n}F_{3i}} & = \frac {2 \sum_{i=1}^{3n}F_{2i-1} + 4 \sum_{i=1}^{3n}F_{2i}}{\frac 12 \sum_{i=1}^{3n} F_{2i} + \sum_{i=1}^{2n}F_{3i}} \\ & = \frac {2F_{6n}+4F_{6n+1}-4}{\frac 12F_{6n+1}-\frac 12 + \frac 12 F_{6n+2}-\frac 12} \\ & = \frac {4F_{6n}+8F_{6n+1}-8}{F_{6n+1} + F_{6n+2}-2} \\ & = \frac {\blue{4F_{6n}+4F_{6n+1}} +4F_{6n+1}-8}{F_{6n+1} + F_{6n+2}-2} \\ & = \frac {4F_{6n+1}+\blue{4F_{6n+2}}-8}{F_{6n+1} + F_{6n+2}-2} \\ & = \boxed 4 \end{aligned}

Lingga Musroji
Dec 1, 2020

Let i = 1 2151 F 2 i = x \sum_{i=1}^{2151}F_{2i}=x and i = 1 2151 F 2 i 1 = y \sum_{i=1}^{2151}F_{2i-1}=y

Numerator:

i = 1 4302 ( 3 + ( 1 ) i ) F i = i = 1 2151 4 F 2 i + i = 1 2151 2 F 2 i 1 = 4 x + 2 y \sum_{i=1}^{4302}(3+(-1)^i)F_i=\sum_{i=1}^{2151}4F_{2i}+\sum_{i=1}^{2151}2F_{2i-1}=4x+2y

Denominator:

i = 1 1434 F 3 i = F 3 + F 6 + F 9 + + F 4302 i = 1 1434 F 3 i = F 1 + F 2 + F 4 + F 5 + F 7 + F 9 + + F 4300 + F 4301 i = 1 1434 F 3 i = ( F 1 + F 3 + F 5 + F 7 + F 9 + + F 4301 ) + ( F 2 + F 4 + F 6 + F 8 + + F 4302 ) ( F 3 + F 6 + F 9 + + F 4302 ) i = 1 1434 F 3 i = x + y i = 1 1434 F 3 i 2 i = 1 1434 F 3 i = x + y i = 1 1434 F 3 i = x + y 2 \begin{array}{ccc}\sum_{i=1}^{1434}F_{3i}&=&F_3+F_6+F_9+\ldots+F_{4302}\\\sum_{i=1}^{1434}F_{3i}&=&F_1+F_2+F_4+F_5+F_7+F_9+\ldots+F_{4300}+F_{4301}\\\sum_{i=1}^{1434}F_{3i}&=&(F_1+F_3+F_5+F_7+F_9+\ldots+F_{4301})+(F_2+F_4+F_6+F_8+\ldots+F_{4302})-(F_3+F_6+F_9+\ldots+F_{4302})\\\sum_{i=1}^{1434}F_{3i}&=&x+y-\sum_{i=1}^{1434}F_{3i}\\2\sum_{i=1}^{1434}F_{3i}&=&x+y\\\sum_{i=1}^{1434}F_{3i}&=&\frac{x+y}{2}\end{array}

i = 1 2151 F 2 i 2 + i = 1 1434 F 3 i = x 2 + x + y 2 = 2 x + y 2 \sum_{i=1}^{2151}\frac{F_{2i}}{2}+\sum_{i=1}^{1434}F_{3i}=\frac{x}{2}+\frac{x+y}{2}=\frac{2x+y}{2}

Final answer:

4 x + 2 y 2 x + y 2 = 4 \frac{4x+2y}{\frac{2x+y}{2}}=4

Braden Dean
Nov 29, 2020

i = 1 4302 ( ( 3 + ( 1 ) i ) F i ) \displaystyle\sum_{i=1}^{4302}\Big((3+(-1)^{i})F_{i}\Big)

can be rewritten as:

i = 1 4302 2 F i + 2 i = 1 4302 ( 1 + ( 1 ) i ) F i 2 \displaystyle\sum_{i=1}^{4302}2F_{i} + 2\displaystyle\sum_{i=1}^{4302}\frac{(1+(-1)^{i})F_{i}}{2}

This can then be evaluated to

2 F 4304 2 + 2 F 4303 2 = 2 F 4305 4 2F_{4304} - 2 + 2F_{4303} - 2 = 2F_{4305} -4

as the sum of the first n Fibonacci numbers is equal to F n + 2 1 F_{n+2}-1 , and the sum of every other Fibonacci number starting at F 2 F_2 is equal to F n + 1 1 F_{n+1} - 1

We can then evaluate the bottom, which is much simpler:

i = 1 2151 F 2 i 2 = F 4303 1 2 \displaystyle\sum_{i=1}^{2151}\frac{F_{2i}}{2} = \frac{F_{4303}-1}{2}

Every third Fibonacci can be evaluated as

S = F 3 + F 6 + F 9 + . . . + F n S = F_3 + F_6 + F_9 + ... + F_n

2 S = 2 F 3 + 2 F 6 + 2 F 9 + . . . + 2 F n 2S = 2F_3 + 2F_6 + 2F_9 + ... + 2F_n

2 F n = F n 2 + F n 1 + F n 2F_n = F_{n-2} + F_{n-1} + F_n

2 S = F 1 + F 2 + F 3 + F 4 + . . . + F n 2S = F_1 + F_2 + F_3 + F_4 + ... + F_n

S = F n + 2 1 2 S = \frac{F_{n+2} - 1}{2}

Therefore the denominator is equal to:

F 4303 1 2 + F 4304 1 2 = F 4305 2 2 \dfrac{F_{4303}-1}{2} + \dfrac{F_{4304}-1}{2} = \dfrac{F_{4305}-2}{2}

Therefore,

2 F 4305 4 F 4305 2 2 = 4 \dfrac{2F_{4305}-4}{\frac{F_{4305}-2}{2}} = 4

@Braden Dean, your problem statement is wrong. By convention F 0 = 0 F_0 = 0 , F 1 = 1 F_1 = 1 , and F 2 = 1 F_2 = 1 , ... All your summation should start with i = 1 \sum_\red{i=1} instead i = 0 i=0 .

Chew-Seong Cheong - 6 months, 2 weeks ago

Log in to reply

Thank you! Fixed.

Braden Dean - 6 months, 2 weeks ago

Log in to reply

Still incorrect. The upper limits 4302 4302 , 2151 2151 , and 1434 1434 were correct.

Chew-Seong Cheong - 6 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...