Fibonacci Game

Logic Level 2

Hans picked two consecutive positive integers.

  • He called the smaller number the first term then the other, the second term.
  • He added the two numbers together and called the sum the third term.
  • He added the third term and the second term and the result would be the fourth term, and so on.

Hans' seventh term is 86 86 . Multiply Hans' two starting numbers.


Join the guessing game!


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kaizen Cyrus
Aug 6, 2020

x 1 st term , x + 1 2 nd , 2 x + 1 3 rd , 3 x + 2 4 th , 5 x + 3 5 th , 8 x + 5 6 th , 13 x + 8 7 th , . . . \small \underbrace{x}_{1\text{st term}}, \underbrace{x+1}_{2\text{nd}}, \underbrace{2x+1}_{3\text{rd}}, \underbrace{3x+2}_{4\text{th}}, \underbrace{5x+3}_{5\text{th}}, \underbrace{8x+5}_{6\text{th}}, \underbrace{13x + 8}_{7\text{th}}, ...

13 x + 8 = 86 x = 6 \begin{aligned} 13x + 8 &= 86 \\ x &= 6 \end{aligned}

The product of 6 6 and 7 7 is 42 \boxed{42} .

42 42 is always the answer. :)

Vinayak Srivastava - 10 months, 1 week ago

I forgot the 2 numbers chosen were consecutive and use 8x+13y=86 to get x=14, y=2 (rej) and x=6, y=7

Kenny O. - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...