Fibonacci in 2015

Let f ( n ) f(n) be the n n th Fibonacci number, where f ( 0 ) = 0 f(0) = 0 and f ( 1 ) = 1 f(1) = 1 . Which of the following is equal to

f ( 201 5 2015 + 2020 ) f ( 201 5 2015 + 2010 ) ? f(2015^{2015} + 2020) - f(2015^{2015} + 2010)?

2015 × f ( 201 5 2015 ) 2015\times f(2015^{2015}) 2015 ! 2015! f ( 201 5 2016 ) f(2015^{2016}) 11 × f ( 201 5 2015 + 2015 ) 11\times f(2015^{2015} + 2015) 2014 ! × f ( 2015 ! ) 2014!\times f(2015!) 2015 × f ( 201 5 2 ) + 10 2015\times f(2015^2) + 10 3 × f ( 201 5 2012 ) 3\times f(2015^{2012})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Caleb Townsend
Feb 5, 2015

Recall that f ( n + 10 ) = f ( n + 9 ) + f ( n + 8 ) f(n+10) = f(n+9) + f(n+8) by the recursive definition of the Fibonacci sequence. Continuing to simplify, we get f ( n + 9 ) + f ( n + 8 ) = 2 f ( n + 8 ) + f ( n + 7 ) . f(n+9) + f(n+8) = 2 f(n+8) + f(n+7). If we continue this pattern, we find that f ( n + 10 ) = 55 f ( n + 1 ) + 34 f ( n ) f(n+10) = 55f(n+1) + 34f(n) Therefore f ( n + 10 ) f ( n ) = 55 f ( n + 1 ) + 33 f ( n ) . f(n+10) - f(n) = 55f(n+1) + 33f(n). Using the recursive definition again, this simplifies to f ( n + 10 ) f ( n ) = 33 f ( n + 2 ) + 22 f ( n + 1 ) . f(n+10) - f(n) = 33f(n+2) + 22f(n+1). Repeating this process, we see that f ( n + 10 ) f ( n ) = 11 f ( n + 5 ) f(n+10) - f(n) = 11f(n+5) Now notice that if n = 201 5 2015 + 2010 n = 2015^{2015} + 2010 , then f ( 201 5 2015 + 2020 ) f ( 201 5 2015 + 2010 ) = f ( n + 10 ) f ( n ) . f(2015^{2015} + 2020) - f(2015^{2015} + 2010) = f(n + 10) - f(n). Therefore, the answer is 11 f ( n + 5 ) = 11 f ( 201 5 2015 + 2015 ) 11f(n+5) = \boxed{11f(2015^{2015} + 2015)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...