Fibonacci Nested Radical Product

Algebra Level 5

Find a a :

n = 1 2017 ( F n 1 + Δ n ) = F a 1 + Δ a \large \displaystyle \prod_{n=1}^{2017} \left(F_{n-1}+\Delta_n \right)=F_{a-1}+\Delta_a

where,

Δ m = 2 F m 2 + F m 2 F m 2 F m 2 F m 2 + F m 2 F m 2 F m \Delta_m=\sqrt{2{F_m}^2+F_m \sqrt{2{F_m}^2-F_m \sqrt{2{F_m}^2+F_m \sqrt{2{F_m}^2-F_m \sqrt{\cdots}}}}}

F n F_n is the n t h n^{th} Fibonacci number with F 0 = 0 , F 1 = 1 , F 2 = 1 F_0=0,F_1=1,F_2=1 which satisfy the recurrence relation F n = F n 1 + F n 2 F_n=F_{n-1}+F_{n-2}


The answer is 2035153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 7, 2017

Note that x = Δ n F n = 2 + 2 2 + 2 x \; = \; \frac{\Delta_n}{F_n} \; = \; \sqrt{2 + \sqrt{2 - \sqrt{2 + \sqrt{2 - \cdots}}}} is such that x > 2 x > \sqrt{2} and x 2 = 2 + 2 x ( x 2 2 ) 2 + x 2 = 0 x 4 4 x 2 + x + 2 = 0 ( x 1 ) ( x + 2 ) ( x 2 x 1 ) = 0 \begin{aligned} x^2 & = \; 2 + \sqrt{2 - x} \\ (x^2 - 2)^2 + x - 2 & = \; 0 \\ x^4 - 4x^2 + x + 2 & = \; 0 \\ (x - 1)(x + 2)(x^2 - x - 1) & = \; 0 \end{aligned} and hence x = 1 2 ( 5 + 1 ) = ϕ x = \tfrac12(\sqrt{5}+1) = \phi . Now F n = 1 5 [ ϕ n ( ϕ 1 ) n ] Δ n = ϕ F n = 1 5 [ ϕ n + 1 + ( ϕ 1 ) n 1 ] F_n \; = \; \tfrac{1}{\sqrt{5}} \big[\phi^n - (-\phi^{-1})^n\big] \hspace{2cm} \Delta_n \; =\; \phi F_n \; = \; \tfrac{1}{\sqrt{5}}\big[ \phi^{n+1} + (-\phi^{-1})^{n-1} \big] so that F n 1 + Δ n = 1 5 [ ϕ n 1 + ϕ n + 1 ] = ϕ n F_{n-1} + \Delta_n \; = \; \tfrac{1}{\sqrt{5}}\big[\phi^{n-1} + \phi^{n+1}\big] \; = \; \phi^n Thus n = 1 N ( F n 1 + Δ n ) = n = 1 N ϕ n = ϕ 1 2 N ( N + 1 ) = F a 1 + Δ a \prod_{n=1}^N\big(F_{n-1} + \Delta_n) \; = \; \prod_{n=1}^N \phi^n \; =\; \phi^{\frac12N(N+1)} \; = \; F_{a-1} + \Delta_a where a = 1 2 N ( N + 1 ) a =\tfrac12N(N+1) . In this case N = 2017 N=2017 , and so a = 2035153 a = \boxed{2035153} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...