Fibonacci Polynomial

Algebra Level 5

A polynomial P ( x ) P(x) of degree 13 13 satisfies P ( k ) = F k P(k)=F_{k} for k = 15 , 16 , . . . . , 28 k=15,16,....,28 ( F k F_{k} denotes the k t h kth Fibonacci number.)

Find the value of P ( 29 ) P(29) .


The answer is 514228.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Souryajit Roy
Jul 24, 2014

Lemma :

If a polynomial of degree n n or less satisfies P ( j ) = r j P(j)=r^{j} for j = 0 , 1 , . . . , n j=0,1,...,n ,then P ( n + 1 ) = r n + 1 ( r 1 ) n + 1 P(n+1)=r^{n+1}-(r-1)^{n+1}

Solution I claim P ( x ) = k = o n ( k x ) ( r 1 ) k P(x)=\sum_{k=o}^{n}(_{k}^{x})(r-1)^k

Clearly, P P is a polynomial of degree at most n n .Since, the binomial coefficients ( k j ) (_{k}^{j}) disappear for k > j k>j ,the Binomial Theorem yields P ( j ) = k = o j ( k j ) ( r 1 ) k = r j P(j)=\sum_{k=o}^{j}(_{k}^{j})(r-1)^k=r^{j}

Hence, P ( n + 1 ) = k = o n ( k n + 1 ) ( r 1 ) k = r n + 1 ( r 1 ) n + 1 P(n+1)=\sum_{k=o}^{n}(_{k}^{n+1})(r-1)^k=r^{n+1}-(r-1)^{n+1}

Generalization of the Lemma

If P ( k ) = r k P(k)=r^{k} for k = m , m + 1 , . . . , m + n k=m,m+1,...,m+n ,then P ( m + n + 1 ) = r m ( r n + 1 ( r 1 ) n + 1 ) P(m+n+1)=r^{m}(r^{n+1}-(r-1)^{n+1}) .

Solution Simple! Just let P ( x ) = r m k = 0 n ( r 1 ) k ( k x ) P(x)=r^{m}\sum_{k=0}^{n}(r-1)^{k}(_{k}^{x}) and proceed as previous.

Generalization of the Given Problem

If a polynomial P P of degree n n satisfies P ( k ) = F k P(k)=F_{k} for k = m , m + 1 , . . . , m + n k=m,m+1,...,m+n then P ( m + n + 1 ) = F m + n + 1 F m n 1 P(m+n+1)=F_{m+n+1}-F_{m-n-1} .

Let p ( k ) = 5 P ( k ) p(k)=\sqrt{5}P(k) .By Binet’s Formula, p ( k ) = a k b k p(k)=a^k-b^k where a = 1 + 5 2 a=\frac{1+\sqrt{5}}{2} and b = 1 5 2 b= \frac{1-\sqrt{5}}{2} .

By the Generalized lemma p ( m + n + 1 ) = a m ( a n + 1 ( a 1 ) n + 1 ) b m ( b n + 1 ( b 1 ) n + 1 ) p(m+n+1)=a^{m}(a^{n+1}-(a-1)^{n+1})-b^{m}(b^{n+1}-(b-1)^{n+1})

Note that, a 1 = 1 a a-1=\frac{1}{a} and b 1 = 1 b b-1=\frac{1}{b} .

Hence, p ( m + n + 1 ) = ( a m + n + 1 b m + n + 1 ) ( a m n 1 b m n 1 ) p(m+n+1)=(a^{m+n+1}-b^{m+n+1})-(a^{m-n-1}-b^{m-n-1})

So, P ( m + n + 1 ) = F m + n + 1 F m n 1 P(m+n+1)=F_{m+n+1}-F_{m-n-1} .

Hence, P ( 29 ) = P 15 + 13 + 1 F 15 13 1 = F 29 1 = 514229 1 = 514228 P(29)=P_{15+13+1}-F_{15-13-1}=F_{29}-1=514229-1=514228 .

I submitted 514229!!!! missed it

Kunal Gupta - 6 years, 10 months ago

Log in to reply

I did it using the method of differences...though it was a bit messy!

Anik Mandal - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...