of degree satisfies for ( denotes the Fibonacci number.)
A polynomialFind the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Lemma :
If a polynomial of degree n or less satisfies P ( j ) = r j for j = 0 , 1 , . . . , n ,then P ( n + 1 ) = r n + 1 − ( r − 1 ) n + 1
Solution I claim P ( x ) = ∑ k = o n ( k x ) ( r − 1 ) k
Clearly, P is a polynomial of degree at most n .Since, the binomial coefficients ( k j ) disappear for k > j ,the Binomial Theorem yields P ( j ) = ∑ k = o j ( k j ) ( r − 1 ) k = r j
Hence, P ( n + 1 ) = ∑ k = o n ( k n + 1 ) ( r − 1 ) k = r n + 1 − ( r − 1 ) n + 1
Generalization of the Lemma
If P ( k ) = r k for k = m , m + 1 , . . . , m + n ,then P ( m + n + 1 ) = r m ( r n + 1 − ( r − 1 ) n + 1 ) .
Solution Simple! Just let P ( x ) = r m ∑ k = 0 n ( r − 1 ) k ( k x ) and proceed as previous.
Generalization of the Given Problem
If a polynomial P of degree n satisfies P ( k ) = F k for k = m , m + 1 , . . . , m + n then P ( m + n + 1 ) = F m + n + 1 − F m − n − 1 .
Let p ( k ) = 5 P ( k ) .By Binet’s Formula, p ( k ) = a k − b k where a = 2 1 + 5 and b = 2 1 − 5 .
By the Generalized lemma p ( m + n + 1 ) = a m ( a n + 1 − ( a − 1 ) n + 1 ) − b m ( b n + 1 − ( b − 1 ) n + 1 )
Note that, a − 1 = a 1 and b − 1 = b 1 .
Hence, p ( m + n + 1 ) = ( a m + n + 1 − b m + n + 1 ) − ( a m − n − 1 − b m − n − 1 )
So, P ( m + n + 1 ) = F m + n + 1 − F m − n − 1 .
Hence, P ( 2 9 ) = P 1 5 + 1 3 + 1 − F 1 5 − 1 3 − 1 = F 2 9 − 1 = 5 1 4 2 2 9 − 1 = 5 1 4 2 2 8 .