Fibonacci Polynomials!

Level 2

What is the sum of real values a , b a, b , such that: ( x 2 x 1 ) (x^2 - x - 1) divides ( a x 5 + b x 4 + 1 ) (ax^5 + bx^4 + 1)


Bonus: Find a general solution, or equations for a , b a,b when ( x 2 x 1 ) (x^2 - x - 1) divides ( a x n + 1 + b x n + 1 ) (ax^{n+1} + bx^{n} + 1)

0 2 -1 -2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mahdi Raza
May 23, 2020
  • Let a x 5 + b x 4 + 1 = Q ( x ) ( x 2 x 1 ) + R ( x ) ax^5 + bx^4 + 1 = Q(x)(x^2 - x - 1) + R(x) .
  • We want R ( x ) R(x) , the remainder = 0 =0
  • Thus we set ( x 2 x 1 ) = 0 (x^2 - x - 1) = 0

x 2 = x + 1 x 3 = x 2 + x × x x 4 = x 3 + x 2 × x x 5 = x 4 + x 3 × x \begin{aligned} \implies x^2 &= x + 1 \\ x^{3} &= x^{2} + x^{} \quad {\color{#3D99F6}{\times x}} \\ x^{4} &= x^{3} + x^{2} \quad {\color{#3D99F6}{\times x}} \\ x^{5} &= x^{4} + x^{3} \quad {\color{#3D99F6}{\times x}} \end{aligned}

a x 5 + b x 4 + 1 = a ( x 4 + x 3 ) + b x 4 + 1 = ( a + b ) x 4 + a x 3 + 1 = ( 2 a + b ) x 3 + ( a + b ) x 2 + 1 = ( 3 a + 2 b ) x 2 + ( 2 a + b ) x + 1 = ( 5 a + 3 b ) x + ( 3 a + 2 b ) + 1 0 = ( 5 a + 3 b ) x + ( 3 a + 2 b + 1 ) \begin{aligned} ax^5 + bx^4 + 1 &= a(x^4 + x^3) + bx^4 + 1 \\ &= (a+b)x^4 + ax^3 + 1 \\ &= (2a+b)x^3 + (a+b)x^2 + 1 \\ &= (3a+2b)x^2 + (2a+b)x + 1 \\ &= (5a+3b)x + (3a+2b) + 1 \\ \\ 0 &= (5a+3b)x + (3a+2b + 1) \end{aligned}

\[\begin{cases} 5a + 3b = 0 \\ 3a + 2b + 1 = 0 \end{cases}

\implies a = 3, b = -5

\implies \boxed{a + b =-2}\]

Can you observe the Fibonnaci series?

Mahdi Raza - 1 year ago

Why do we set (x^2-x-1)=0 ?

Prakash Arora - 1 year ago

Log in to reply

  • P ( x ) = Q ( x ) D ( x ) + R ( x ) P(x) = Q(x) \cdot D(x) + R(x)
  • Thus to make P ( x ) = R ( x ) P(x) = R(x) ,
  • D ( x ) D(x) is set to equal 0

Mahdi Raza - 1 year ago

Have you qualified inmo

Log in to reply

No, qualified RMO to give INMO last year (2020)

Mahdi Raza - 12 months ago
David Vreken
May 24, 2020

For Fibonacci numbers F F :

( x 2 x 1 ) ( ( 1 ) n F n x n 1 + ( 1 ) n 1 F n 1 x n 2 + . . . 2 x 2 + x 1 ) (x^2 - x - 1)((-1)^{n}F_{n}x^{n - 1} + (-1)^{n - 1}F_{n - 1}x^{n - 2} + ... -2x^2 + x - 1)

= ( ( 1 ) n F n x n + 1 + ( 1 ) n 1 F n 1 x n + ( 1 ) n 2 F n 2 x n 1 + . . . 2 x 4 + x 3 x 2 ) + ( ( 1 ) n F n x n ( 1 ) n 1 F n 1 x n 1 + . . . 3 x 4 + 2 x 3 x 2 + x ) + ( ( 1 ) n F n x n 1 ( 1 ) n 1 F n 1 x n 2 + . . . + 5 x 4 3 x 3 + 2 x 2 x + 1 ) = ((-1)^{n}F_{n}x^{n + 1} + (-1)^{n - 1}F_{n - 1}x^{n} + (-1)^{n - 2}F_{n - 2}x^{n - 1} + ... -2x^4 + x^3 - x^2) + (-(-1)^{n}F_{n}x^{n} - (-1)^{n - 1}F_{n - 1}x^{n - 1} + ... -3x^4 + 2x^3 - x^2 + x) + (-(-1)^{n}F_{n}x^{n - 1} - (-1)^{n - 1}F_{n - 1}x^{n - 2} + ... + 5x^4 - 3x^3 + 2x^2 - x + 1)

= ( 1 ) n F n x n + 1 + ( ( 1 ) n 1 F n 1 + ( 1 ) n 1 F n ) x n + ( ( 1 ) n 2 F n 2 + ( 1 ) n 2 F n 1 ( 1 ) n 2 F n ) x n 1 + . . . + ( 2 3 + 5 ) x 4 + ( 1 + 2 3 ) x 3 + ( 1 1 + 2 ) x 2 + ( 1 1 ) x + 1 = (-1)^{n}F_{n}x^{n + 1} + ((-1)^{n - 1}F_{n - 1} + (-1)^{n - 1}F_{n})x^{n} + ((-1)^{n - 2}F_{n - 2} + (-1)^{n - 2}F_{n - 1} - (-1)^{n - 2}F_{n})x^{n - 1} + ... + (-2 - 3 + 5)x^4 + (1 + 2 - 3)x^3 + (-1 - 1 + 2)x^2 + (1 - 1)x + 1

= ( 1 ) n F n x n + 2 + ( 1 ) n 1 F n + 1 x n + 1 = (-1)^{n}F_{n}x^{n + 2} + (-1)^{n - 1}F_{n + 1}x^{n} + 1

Therefore, x 2 x 1 x^2 - x - 1 divides ( 1 ) n F n x n + 1 + ( 1 ) n 1 F n + 1 x n + 1 (-1)^{n}F_{n}x^{n + 1} + (-1)^{n - 1}F_{n + 1}x^{n} + 1 .

In this question, n = 4 n = 4 , so x 2 x 1 x^2 - x - 1 divides F 4 x 5 F 5 x 4 + 1 = 3 x 5 5 x 4 + 1 F_{4}x^{5} - F_{5}x^{4} + 1 = 3x^{5} - 5x^{4} + 1 , so a = 3 a = 3 , b = 5 b = -5 , and a + b = 2 a + b = \boxed{-2} .

Aha nice generalisation!

Mahdi Raza - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...