What is the sum of real values a , b , such that: ( x 2 − x − 1 ) divides ( a x 5 + b x 4 + 1 )
Bonus: Find a general solution, or equations for a , b when ( x 2 − x − 1 ) divides ( a x n + 1 + b x n + 1 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you observe the Fibonnaci series?
Why do we set (x^2-x-1)=0 ?
Log in to reply
Have you qualified inmo
For Fibonacci numbers F :
( x 2 − x − 1 ) ( ( − 1 ) n F n x n − 1 + ( − 1 ) n − 1 F n − 1 x n − 2 + . . . − 2 x 2 + x − 1 )
= ( ( − 1 ) n F n x n + 1 + ( − 1 ) n − 1 F n − 1 x n + ( − 1 ) n − 2 F n − 2 x n − 1 + . . . − 2 x 4 + x 3 − x 2 ) + ( − ( − 1 ) n F n x n − ( − 1 ) n − 1 F n − 1 x n − 1 + . . . − 3 x 4 + 2 x 3 − x 2 + x ) + ( − ( − 1 ) n F n x n − 1 − ( − 1 ) n − 1 F n − 1 x n − 2 + . . . + 5 x 4 − 3 x 3 + 2 x 2 − x + 1 )
= ( − 1 ) n F n x n + 1 + ( ( − 1 ) n − 1 F n − 1 + ( − 1 ) n − 1 F n ) x n + ( ( − 1 ) n − 2 F n − 2 + ( − 1 ) n − 2 F n − 1 − ( − 1 ) n − 2 F n ) x n − 1 + . . . + ( − 2 − 3 + 5 ) x 4 + ( 1 + 2 − 3 ) x 3 + ( − 1 − 1 + 2 ) x 2 + ( 1 − 1 ) x + 1
= ( − 1 ) n F n x n + 2 + ( − 1 ) n − 1 F n + 1 x n + 1
Therefore, x 2 − x − 1 divides ( − 1 ) n F n x n + 1 + ( − 1 ) n − 1 F n + 1 x n + 1 .
In this question, n = 4 , so x 2 − x − 1 divides F 4 x 5 − F 5 x 4 + 1 = 3 x 5 − 5 x 4 + 1 , so a = 3 , b = − 5 , and a + b = − 2 .
Aha nice generalisation!
Problem Loading...
Note Loading...
Set Loading...
⟹ x 2 x 3 x 4 x 5 = x + 1 = x 2 + x × x = x 3 + x 2 × x = x 4 + x 3 × x
a x 5 + b x 4 + 1 0 = a ( x 4 + x 3 ) + b x 4 + 1 = ( a + b ) x 4 + a x 3 + 1 = ( 2 a + b ) x 3 + ( a + b ) x 2 + 1 = ( 3 a + 2 b ) x 2 + ( 2 a + b ) x + 1 = ( 5 a + 3 b ) x + ( 3 a + 2 b ) + 1 = ( 5 a + 3 b ) x + ( 3 a + 2 b + 1 )
\[\begin{cases} 5a + 3b = 0 \\ 3a + 2b + 1 = 0 \end{cases}
\implies a = 3, b = -5
\implies \boxed{a + b =-2}\]