Fibonacci squares

Algebra Level 2

1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , \large 1,1,2,3,5,8,13,21,34,55,89, \cdots

The above is the Fibonacci sequence , where F n F_n is the n n th Fibonacci number with F 1 = F 2 = 1 F_1 = F_2 = 1 .

Without using a calculator , find which answer is equivalent to ( F 10 ) 2 ( F 9 ) 2 { ({ F }_{ 10 }) }^{ 2 }-{ ({ F }_{ 9 }) }^{ 2 } .

Hint: Try to find a simpler formula for ( F n + 1 ) 2 ( F n ) 2 { ({ F }_{ n+1 }) }^{ 2 }-{ ({ F }_{ n }) }^{ 2 } .

55 13 2 55\cdot { 13 }^{ 2 } 89 21 89\cdot 21 34 2 { 34 }^{ 2 } 55 13 55\cdot 13 34 2 + 13 { 34 }^{ 2 }+{ 13 } 34 2 + 13 2 { 34 }^{ 2 }+{ 13 }^{ 2 } 55 21 55\cdot 21 21 2 { 21 }^{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 21, 2018

F n + 1 2 F n 2 = ( F n + 1 + F n ) ( F n + 1 F n ) = F n + 2 F n 1 F_{n+1}^2 - F_n^2 = {\color{#3D99F6}\left(F_{n+1}+F_n\right)}{\color{#D61F06}\left(F_{n+1}-F_n\right)} = {\color{#3D99F6}F_{n+2}}{\color{#D61F06}F_{n-1}} . Therefore, F 10 2 F 9 2 = F 11 F 8 = 89 21 F_{10}^2-F_9^2 = F_{11}F_8 = \boxed{89\cdot 21} .

Louis Ullman
Apr 21, 2018

If we replace n n with 2 2 in the formula given by the hint, then we get ( F 3 ) 2 ( F 2 ) 2 { ({ F }_{ 3 }) }^{ 2 }-{ ({ F }_{ 2 }) }^{ 2 } , which can be simplified to ( 2 ) 2 ( 1 ) 2 { (2) }^{ 2 }-{ (1) }^{ 2 } , which is equal to 3 1 3\cdot 1 .

Replacing n n with 3 3 , we get ( F 4 ) 2 ( F 3 ) 2 { ({ F }_{ 4 }) }^{ 2 }-{ ({ F }_{ 3 }) }^{ 2 } , or 5 1 5\cdot 1 .

Replacing it with 4 4 , we get ( F 5 ) 2 ( F 4 ) 2 { ({ F }_{ 5 }) }^{ 2 }-{ ({ F }_{ 4 }) }^{ 2 } , or 8 2 8\cdot 2 .

Interestingly, all of the numbers we get are Fibonacci numbers multiplied by other Fibonacci numbers. Using this fact, we can continue the pattern without having to do very many calculations:

[ ( F 3 ) 2 ( F 2 ) 2 2 2 1 2 3 1 ( F 4 ) 2 ( F 3 ) 2 3 2 2 2 5 1 ( F 5 ) 2 ( F 4 ) 2 5 2 3 2 8 2 ( F 6 ) 2 ( F 5 ) 2 8 2 5 2 13 3 ( F 7 ) 2 ( F 6 ) 2 13 2 8 2 21 5 ( F 8 ) 2 ( F 7 ) 2 21 2 13 2 34 8 ( F 9 ) 2 ( F 8 ) 2 34 2 21 2 55 13 ( F 10 ) 2 ( F 9 ) 2 5 5 2 3 4 2 89 21 ] \begin{bmatrix} { ({ F }_{ 3 }) }^{ 2 }-{ ({ F }_{ 2 }) }^{ 2 } & { 2 }^{ 2 }-{ 1 }^{ 2 } & 3\cdot 1 \\ { ({ F }_{ 4 }) }^{ 2 }-{ ({ F }_{ 3 }) }^{ 2 } & { 3 }^{ 2 }-{ 2 }^{ 2 } & 5\cdot 1 \\ { ({ F }_{ 5 }) }^{ 2 }-{ ({ F }_{ 4 }) }^{ 2 } & { 5 }^{ 2 }-{ 3 }^{ 2 } & 8\cdot 2 \\ { ({ F }_{ 6 }) }^{ 2 }-{ ({ F }_{ 5 }) }^{ 2 } & { 8 }^{ 2 }-{ 5 }^{ 2 } & 13\cdot 3 \\ { ({ F }_{ 7 }) }^{ 2 }-{ ({ F }_{ 6 }) }^{ 2 } & { 13 }^{ 2 }-{ 8 }^{ 2 } & 21\cdot 5 \\ { ({ F }_{ 8 }) }^{ 2 }-{ ({ F }_{ 7 }) }^{ 2 } & { 21 }^{ 2 }-{ 13 }^{ 2 } & 34\cdot 8 \\ { ({ F }_{ 9 }) }^{ 2 }-{ ({ F }_{ 8 }) }^{ 2 } & { 34 }^{ 2 }-{ 21 }^{ 2 } & 55\cdot 13 \\ \boxed { { ({ F }_{ 10 }) }^{ 2 }-{ ({ F }_{ 9 }) }^{ 2 } } & 55^{ 2 }-34^{ 2 } & \boxed { 89\cdot 21 } \end{bmatrix}

. .
May 13, 2021

F 10 = 55 , F 9 = 34 F 10 2 F 9 2 = 3025 1156 = 1869 F_{10} = 55, F_9 = 34 \Rightarrow F_{10} ^ 2 - F_9 ^ 2 = 3025 - 1156 = 1869 .

The last digit is 9 9 , so we can just find the last digit is 9.

55 × 1 3 2 = 55 × 169 5 ( m o d 10 ) 55 \times 13 ^ 2 = 55 \times 169 \equiv 5 ( \mod 10 )

89 × 21 9 ( m o d 10 ) 89 \times 21 \equiv 9 ( \mod 10 )

3 4 2 6 ( m o d 10 ) 34 ^ 2 \equiv 6 ( \mod 10 )

55 × 13 5 ( m o d 10 ) 55 \times 13 \equiv 5 ( \mod 10 )

3 4 2 + 13 = 1156 + 13 9 ( m o d 10 ) 34 ^ 2 + 13 = 1156 + 13 \equiv 9 ( \mod 10 )

3 4 2 + 1 3 2 = 1156 + 169 5 ( m o d 10 ) 34 ^ { 2 } + 13 ^ { 2 } = 1156 + 169 \equiv 5 ( \mod 10 )

55 × 21 5 ( m o d 10 ) 55 \times 21 \equiv 5 ( \mod 10 )

2 1 2 = 1 ( m o d 10 ) 21 ^ { 2 } = 1 ( \mod 10 )

So, 89 × 21 89 \times 21 , or 3 4 2 + 13 34 ^ { 2 } + 13 can be the answer.

But, 89 × 21 = 1869 89 \times 21 = 1869 , and 3 4 2 + 13 = 1169 34 ^ { 2 } + 13 = 1169 .

So 89 × 21 \boxed { 89 \times 21 } is the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...