Zeckendorf's Theorem states that every positive integer can be written uniquely as a sum of distinct non-neighboring Fibonacci number .
Find the sum of indices (0-indexing) such that their responding Fibonacci terms sums up to 99887766554433221100 .
Clarification :
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The proof of Zeckendorf implies that the Zeckendorf representation can be found by always taking the largest Fibonacci number less than the target number, subtracting it out, and repeating the process.