Fibonacci 2021 Series

Algebra Level 4

n = 0 2 n F n ( 2021 + 4084445 ) n = 1 a \sum _{ n=0 }^{ \infty }{ \frac { { 2 }^{ n }{ F }_{ n } }{ { \left( 2021+\sqrt { 4084445 } \right) }^{ n } } } =\frac { 1 }{ a } F n { F }_{ n } is a Fibonacci Number. Find the value of a a


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Syed Shahabudeen
Jun 1, 2020

n = 0 2 n F n ( 2021 + 4084445 ) n = n = 0 F n x n where x = 2021 + 4084445 2 = F 0 + F 1 x + n = 2 F n x n n = 2 F n x n = 1 x 2 n = 0 F n + 2 x n ; F n + 2 = F n + 1 + F n = F 0 + F 1 x + 1 x 2 n = 0 F n + 1 x n + 1 x 2 n = 0 F n x n = F 0 + F 1 x + 1 x n = 0 F n + 1 x n + 1 + 1 x 2 n = 0 F n x n n = 0 F n + 1 x n + 1 = n = 0 F n x n ; F 0 = 0 , F 1 = 1 = 1 x + 1 x n = 0 F n x n + 1 x 2 n = 0 F n x n n = 0 F n x n ( 1 1 x 1 x 2 ) = 1 x n = 0 F n x n = x x 2 x 1 n = 0 F n ( 2021 + 4084445 2 ) n = ( 2021 + 4084445 2 ) ( 2021 + 4084445 2 ) 2 ( 2021 + 4084445 2 ) 1 = 1 2020 \begin{aligned} \sum _{ n=0 }^{ \infty }{ \frac { { 2 }^{ n }{ F }_{ n } }{ { \left( 2021+\sqrt { 4084445 } \right) }^{ n } } } &= \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } &&&&&&&&&&&&&&&\textcolor{#20A900}{\textrm{where}\quad{ x }=\frac { 2021+\sqrt { 4084445 } }{ 2 } } \\&={ F }_{ 0 }+\frac { { F }_{ 1 } }{ { x } } +\sum _{ n=2 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } &&&&&&&&&&&&&&&\textcolor{#20A900} {\sum _{ n=2 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } =\frac { 1 }{ { x }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n+2 } }{ { x }^{ n } } } ;\quad { F }_{ n+2 }={ F }_{ n+1 }+{ F }_{ n } } \\&={ F }_{ 0 }+\frac { { F }_{ 1 } }{ x } +\frac { 1 }{ { x }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n+1 } }{ { x }^{ n } } +\frac { 1 }{ { x }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } } \\ &= { F }_{ 0 }+\frac { { F }_{ 1 } }{ x } +\frac { 1 }{ { x } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n+1 } }{ { x }^{ n+1 } } +\frac { 1 }{ { x }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } } &&&&&&&&&&&&&&&\textcolor{#E81990}{\sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n+1 } }{ { x }^{ n+1 } } =\sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } }\quad;{ F }_{ 0 }=0 ,{ F }_{ 1 }=1 }\\&=\frac { 1 }{ x } +\frac { 1 }{ { x } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } +\frac { 1 }{ { x }^{ 2 } } \sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } }\\\sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } \left( 1-\frac { 1 }{ x } -\frac { 1 }{ { x }^{ 2 } } \right) } &=\frac { 1 }{ x }\\\sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { x }^{ n } } } &=\frac { x }{ { x }^{ 2 }-x-1 }\\\sum _{ n=0 }^{ \infty }{ \frac { { F }_{ n } }{ { \left( \frac { 2021+\sqrt { 4084445 } }{ 2 } \right) }^{ n } } } &=\frac { \left( \frac { 2021+\sqrt { 4084445 } }{ 2 } \right) }{ { \left( \frac { 2021+\sqrt { 4084445 } }{ 2 } \right) }^{ 2 }-\left( \frac { 2021+\sqrt { 4084445 } }{ 2 } \right) -1 }\\&=\frac { 1 }{ 2020 } \end{aligned} a = 2020 \boxed{a=2020}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...