Fiery "Cubes"

Algebra Level 2

200 0 3 1999 200 0 2 199 9 2 2000 + 199 9 3 = ? \large 2000^3-1999 \cdot 2000^2 - 1999^2 \cdot 2000 + 1999^3 = \ ?


The answer is 3999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Danish Ahmed
Apr 24, 2015

200 0 3 1999 200 0 2 199 9 2 2000 + 199 9 3 \displaystyle 2000^3-1999 \cdot 2000^2 - 1999^2 \cdot 2000 + 1999^3

= 200 0 2 ( 2000 1999 ) 199 9 2 ( 2000 1999 ) =2000^2(2000-1999)-1999^2(2000-1999)

= 200 0 2 199 9 2 =2000^2-1999^2

= ( 2000 + 1999 ) ( 2000 1999 ) =(2000+1999)(2000-1999)

= 3999 =3999

Good question!

Mehul Arora - 6 years, 1 month ago

Hey! FIRST i want to tell my english not good your solve is worng -1999^2* 2000 +1999^3 can't to -1999^2(2000-1999)

the right way it's must to -1999^2(2000+1999)

if im wrong im sorry

Log in to reply

You are wrong, as a negative has been factorized out ( 199 9 2 -1999^2 ), all positives being factorized must now be negative, and all negatives go positive. My solution below uses a simpler method with no complication like this one. (even though this one is perfectly correct)

Stewart Feasby - 6 years, 1 month ago

Log in to reply

Thanks! very much

This is a nice way to solve this question! I took a long time to solve because I transformed all terms as 1999 and it's powers to solve it.

Victor Paes Plinio - 6 years, 1 month ago
Gamal Sultan
Apr 27, 2015

y = 2000 , x = 1999

The given expression = y^3 - x y^2 - y x^2 + x^3

= (y^3 - x y^2) - (y x^2 - x^3)

= y^2 (y - x) - x^2 (y - x) = (y - x)(y^2 - x^2) = (y - x)(y - x)(y + x)

= (1)(1)(3999) = 3999

Moderator note:

Splendid.

Great job Gamal!

John Church - 6 years, 1 month ago
Stewart Feasby
Apr 27, 2015

I said that x = 2000, then the equation becomes: = x 3 ( x 1 ) x 2 ( x 1 ) 2 x + ( x 1 ) 3 = x 3 ( x 3 x 2 ) ( x 3 2 x 2 + x ) + ( x 3 3 x 2 + 3 x 1 ) = x 3 x 3 + x 2 x 3 + 2 x 2 x + x 3 3 x 2 + 3 x 1 = ( x 3 x 3 ) + ( x 3 x 3 ) + ( x 2 + 2 x 2 3 x 2 ) x + 3 x 1 = 2 x 1 = 2 2000 1 = 4000 1 = 3999 { =\quad x }^{ 3 }-(x-1){ x }^{ 2 }-{ (x-1) }^{ 2 }x+{ (x-1) }^{ 3 }\\ =\quad { x }^{ 3 }-({ x }^{ 3 }-{ x }^{ 2 })-({ x }^{ 3 }-2{ x }^{ 2 }+x)+{ ({ x }^{ 3 }-{ 3x }^{ 2 }+3x-1) }\\ =\quad { x }^{ 3 }-{ { x }^{ 3 }+{ x }^{ 2 }- }{ x }^{ 3 }{ +2x }^{ 2 }-x+{ x }^{ 3 }-{ 3x }^{ 2 }+3x-1\\ =\quad { (x }^{ 3 }-{ { x }^{ 3 }) }+{ (x }^{ 3 }-{ { x }^{ 3 } })+({ x }^{ 2 }+2{ x }^{ 2 }-{ 3{ x }^{ 2 }) }-x+3x-1\\ =\quad 2x-1\\ =\quad 2\cdot 2000-1\\ =\quad 4000-1\\ =\quad 3999

Tiisetso Ndwandwe
Apr 28, 2015

let 2000=x and 1999=y;

>x^3-yx^2-(y^2)x+y^3=x^2(x-y) -y^2(x-y) =(x-y)(x^2-y^2) =(x-y)(x-y)(x+y) =(2000-1999)(2000-1999)(2000+1999)=3999

200^3-1999(2000^2)-1999^2(2000)+1999^3 let 2000=x
we have;
x^3 - (x-1)(x^2) - (x-1)^2(x) + (x-1)^3 =X^3 - (x^3-x^2) - (x^3-2x^2+x) + (x^3-3x^2+3x-1) =x^3 - x^3 + x^2 - x^3 + 2x^2 - x + x^3 -3x^2 + 3x-1 =(x^3 - x^3) + (x^2 + 2x^2 - 3x^2) + (-x^3 + x^3) ( -x + 3x ) - 1 =2x-1

substitute 2000 to x 2(2000)-1 =4000-1 =3999

John Church
Apr 27, 2015

Let k=1000; so 2000(^3)=2k^3. Equation becomes (2k)^3-(2k-1)(2k)^2-(2k-1)^2(2k)+(2k-1)^3. Multiply using algebra and combine like terms you end up with 4k-1 = 4000 -1= 3999. remember4k means the product of 4 and 1000 or4000.

A different approach since many math problems can be solved in different ways.

John Church - 6 years, 1 month ago

Steve, we think alike. Great job!

John Church - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...