Fight with Omega

Algebra Level 5

Consider the equation x 5 1 = 0 x^5-1=0 . Suppose 1 , α , β , γ , δ 1,\alpha,\beta,\gamma,\delta be its distinct roots. Find the value of ( ω α ) ( ω β ) ( ω γ ) ( ω δ ) ( ω 2 α ) ( ω 2 β ) ( ω 2 γ ) ( ω 2 δ ) . \frac{(\omega-\alpha)(\omega-\beta)(\omega-\gamma)(\omega-\delta)}{(\omega^2-\alpha)(\omega^2-\beta)(\omega^2-\gamma)(\omega^2-\delta)} .

where ω \omega is the non-real cube root of 1.

ω \omega 1 1 ω 2 \omega^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 12, 2017

χ = ( ω α ) ( ω β ) ( ω γ ) ( ω δ ) ( ω 2 α ) ( ω 2 β ) ( ω 2 γ ) ( ω 2 δ ) = ( ω 1 ) ( ω α ) ( ω β ) ( ω γ ) ( ω δ ) ( ω 2 1 ) ( ω 2 1 ) ( ω 2 α ) ( ω 2 β ) ( ω 2 γ ) ( ω 2 δ ) ( ω 1 ) As x 5 1 = ( x 1 ) ( x α ) ( x β ) ( x γ ) ( x δ ) = ( ω 5 1 ) ( ω 2 1 ) ( ω 10 1 ) ( ω 1 ) Note that ω 3 = 1 = ( ω 2 1 ) ( ω 2 1 ) ( ω 1 ) ( ω 1 ) = ( ω 1 ) 2 ( ω + 1 ) 2 ( ω 1 ) 2 = ( ω + 1 ) 2 = ω 2 + 2 ω + 1 = ω 2 + ω + 1 + ω = 0 + ω = ω \begin{aligned} \chi & = \frac {(\omega - \alpha)(\omega - \beta)(\omega - \gamma)(\omega - \delta)}{(\omega^2 - \alpha)(\omega^2 - \beta)(\omega^2 - \gamma)(\omega^2 - \delta)} \\ & = \frac {{\color{#3D99F6}(\omega -1)}(\omega - \alpha)(\omega - \beta)(\omega - \gamma)(\omega - \delta){\color{#D61F06}(\omega^2 -1)}}{{\color{#D61F06}(\omega^2 -1)}(\omega^2 - \alpha)(\omega^2 - \beta)(\omega^2 - \gamma)(\omega^2 - \delta){\color{#3D99F6}(\omega -1)}} & \small \color{#3D99F6}\text{As }x^5 - 1 = (x -1)(x - \alpha)(x - \beta)(x - \gamma)(x - \delta) \\ & = \frac {{\color{#3D99F6}(\omega^5 -1)}{\color{#D61F06}(\omega^2 -1)}}{{\color{#D61F06}(\omega^{10} -1)}{\color{#3D99F6}(\omega -1)}} & \small \color{#3D99F6} \text{Note that }\omega^3 = 1 \\ & = \frac {(\omega^2 -1)(\omega^2 -1)}{(\omega -1)(\omega -1)} \\ & = \frac {(\omega -1)^2(\omega +1)^2}{(\omega -1)^2} \\ & = (\omega +1)^2 \\ & = \omega^2 + 2\omega + 1 \\ & = {\color{#3D99F6}\omega^2 + \omega + 1} + \omega \\ & = {\color{#3D99F6}0} + \omega \\ & = \boxed{\omega} \end{aligned}

How w²+w+1=0

genis dude - 4 years, 4 months ago

Log in to reply

ω 3 = 1 ω 3 1 = 0 ( ω 1 ) ( ω 2 + ω + 1 ) = 0 \begin{aligned} \omega^3 & = 1 \\ \omega^3 - 1 & = 0 \\ (\omega -1)(\omega^2 + \omega + 1) & = 0 \end{aligned}

{ ω = 1 real root ω 2 + ω + 1 = 0 complex roots \implies \begin{cases} \omega = 1 & \small \color{#3D99F6} \text{real root} \\ \omega^2 + \omega + 1 = 0 & \small \color{#3D99F6} \text{complex roots} \end{cases}

Chew-Seong Cheong - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...