Consider the equation x 5 − 1 = 0 . Suppose 1 , α , β , γ , δ be its distinct roots. Find the value of ( ω 2 − α ) ( ω 2 − β ) ( ω 2 − γ ) ( ω 2 − δ ) ( ω − α ) ( ω − β ) ( ω − γ ) ( ω − δ ) .
where ω is the non-real cube root of 1.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How w²+w+1=0
Log in to reply
ω 3 ω 3 − 1 ( ω − 1 ) ( ω 2 + ω + 1 ) = 1 = 0 = 0
⟹ { ω = 1 ω 2 + ω + 1 = 0 real root complex roots
Problem Loading...
Note Loading...
Set Loading...
χ = ( ω 2 − α ) ( ω 2 − β ) ( ω 2 − γ ) ( ω 2 − δ ) ( ω − α ) ( ω − β ) ( ω − γ ) ( ω − δ ) = ( ω 2 − 1 ) ( ω 2 − α ) ( ω 2 − β ) ( ω 2 − γ ) ( ω 2 − δ ) ( ω − 1 ) ( ω − 1 ) ( ω − α ) ( ω − β ) ( ω − γ ) ( ω − δ ) ( ω 2 − 1 ) = ( ω 1 0 − 1 ) ( ω − 1 ) ( ω 5 − 1 ) ( ω 2 − 1 ) = ( ω − 1 ) ( ω − 1 ) ( ω 2 − 1 ) ( ω 2 − 1 ) = ( ω − 1 ) 2 ( ω − 1 ) 2 ( ω + 1 ) 2 = ( ω + 1 ) 2 = ω 2 + 2 ω + 1 = ω 2 + ω + 1 + ω = 0 + ω = ω As x 5 − 1 = ( x − 1 ) ( x − α ) ( x − β ) ( x − γ ) ( x − δ ) Note that ω 3 = 1