Final bid to brilliant

Algebra Level 5

If the polynomial p ( x ) = x 8 + 98 x 4 + 1 p(x) = x^{8} + 98x^{4} + 1 can be expressed by two factors with integer coefficients as p ( x ) = ( a x 4 + b x 3 + c x 2 + d x + e ) ( f x 4 + g x 3 + h x 2 + i x + j ) p(x) = (ax^{4} + bx^{3} + cx^{2} + dx + e) (fx^{4} + gx^{3} + hx^{2} + ix + j) where a , b , c , d , e , f , g , h , i , j a,b,c,d,e,f,g,h,i,j are integers.

Then find the value of a + b + c + d + e + f + g + h + i + j |a+b+c+d+e+f+g+h+i+j| .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 8 + 98 x 4 + 1 = 0 x 4 + 1 x 4 = 98 x 4 + 2 + 1 x 4 = 96 x 2 + 1 x 2 = ± 4 6 i x 2 2 + 1 x 2 = 2 ± 4 6 i x 1 x = ± ( 2 ± 6 i ) ( x 1 x ± 2 ) 2 = 6 ( x 1 x ) 2 ± 4 ( x 1 x ) + 10 = 0 x 2 2 + 1 x 2 ± 4 x 4 x + 10 = 0 x 4 ± 4 x 3 + 8 x 2 4 x + 1 = 0 x^8+98x^4+1=0 \\ x^4+\frac{1}{x^4}=-98 \\ x^4+2+\frac{1}{x^4}=-96 \\ x^2+\frac{1}{x^2}=\pm 4\sqrt{6}i \\ x^2-2+\frac{1}{x^2}=-2\pm 4\sqrt{6}i\\ x-\frac{1}{x}=\pm (2\pm \sqrt{6}i) \\ \left(x-\frac{1}{x}\pm 2\right)^2=-6 \\ \left(x-\frac{1}{x}\right)^2\pm 4\left(x-\frac{1}{x}\right)+10=0 \\ x^2-2+\frac{1}{x^2}\pm 4x \mp \frac{4}{x}+10=0 \\ x^4\pm 4x^3+8x^2 \mp 4x+1=0

So, we must have p ( x ) = ( x 4 + 4 x 3 + 8 x 2 4 x + 1 ) ( x 4 4 x 3 + 8 x 2 + 4 x + 1 ) p(x)=(x^4+4x^3+8x^2-4x+1)(x^4-4x^3+8x^2+4x+1) .

Did the same way (+1).

Aditya Sky - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...