Final state of a two-dimensional dynamical system

Calculus Level 4

A two-dimensional dynamical system is characterised by the following state equation:

x ( k + 1 ) = A x ( k ) x(k+1) = A x(k)

where

x ( k ) = [ x 1 ( k ) x 2 ( k ) ] x(k) = \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}

is the state vector, and matrix A A is given by

A = [ 0.8 0.3 0.2 0.7 ] A = \begin{bmatrix} 0.8 && 0.3 \\ 0.2 && 0.7 \end{bmatrix}

Given that

x ( 0 ) = [ 1 4 ] x(0) = \begin{bmatrix} 1 \\ 4 \end{bmatrix}

Then what is,

lim k x ( k ) ? \lim_{k \to \infty} x(k) ?

[ 5 3 ] \begin{bmatrix} 5 \\ 3 \end{bmatrix} [ 1 2 ] \begin{bmatrix} 1 \\ 2 \end{bmatrix} [ 3 2 ] \begin{bmatrix} 3 \\ 2 \end{bmatrix} [ 1.5 0.5 ] \begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Apr 11, 2016

Note that A [ 3 k 2 + k ] = [ 3 k 2 2 + k 2 ] A\begin{bmatrix} 3-k \\ 2+k\end{bmatrix}=\begin{bmatrix} 3 - \frac{k}{2} \\ 2 + \frac{k}{2} \end{bmatrix} , so, by induction, x ( k ) = [ 3 2 1 k 2 + 2 1 k ] x(k)=\begin{bmatrix} 3 - 2^{1-k}\\ 2 + 2^{1-k}\end{bmatrix} and lim k x ( k ) = [ 3 2 ] \lim_{k \to \infty} x(k)=\begin{bmatrix} 3 \\ 2 \end{bmatrix} .

Very nice observation. Concise solution and to the point.

Hosam Hajjir - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...