Final step: Telescoping sum

Calculus Level 3

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + + 2017 2015 ! + 2016 ! + 2017 ! = 1 m ! 1 n ! \large \begin{aligned}\dfrac{3}{1!+2!+3!} + \dfrac{4}{2!+3!+4!} + \cdots +\dfrac{2017}{2015!+2016!+2017!} = \dfrac{1}{m!} - \frac{1}{n!}\end{aligned} If m m and n n are coprime integers then, find the value of m + n m+n .


Notation: ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Sep 13, 2017

n = 1 2015 [ r + 2 r ! + ( r + 1 ) ! + ( r + 2 ) ! ] = n = 1 2015 [ r + 2 r ! ( 1 + r + 1 + ( r + 1 ) ( r + 2 ) ] = n = 1 2015 [ 1 r ! ( r + 2 ) ] = n = 1 2015 [ r + 1 ( r + 2 ) ! ] = n = 1 2015 [ 1 ( r + 1 ) ! 1 ( r + 2 ) ! ] = 1 2 ! 1 2017 ! \begin{aligned} \displaystyle \sum_{n=1}^{2015} \left [ \dfrac{r + 2}{r! + (r+1)! + (r+2)!} \right ] & = \displaystyle \sum_{n=1}^{2015} \left [ \dfrac{r + 2}{r!(1 + r + 1 + (r+1)(r+2)} \right ] \\ \\ & = \displaystyle \sum_{n=1}^{2015} \left [ \dfrac{1}{r!(r+2)} \right ] \\ \\ & = \displaystyle \sum_{n=1}^{2015} \left [ \dfrac{r + 1}{(r+2)!} \right ]\\ \\ & = \displaystyle \sum_{n=1}^{2015} \left [ \dfrac{1}{(r+1)!} - \dfrac {1}{(r+2)!} \right ]\\ \\ & = \dfrac {1}{2!} - \dfrac {1}{2017!} \end{aligned}

m + n = 2 + 2017 = 2019 \therefore \text {m + n} \ = \ 2 + 2017 \ = \boxed{2019} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...