2 Equations But 3 Unknowns?

Algebra Level 1

3 a + 7 b + c = 315 4 a + 10 b + c = 420 a + b + c = ? \begin{array} { c c c c c c c } 3a &+& 7b &+ &c &= & 315 \\ 4a &+& 10b &+& c &= & 420 \\ a &+& b &+& c &= & ? \end{array}

105 100 110 150

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Multiply the first equation by 3: 9 a + 21 b + 3 c = 945 9a+21b+3c=945 and multiply the second equation by 2: 8 a + 20 b + 2 c = 840 8a+20b+2c=840 , subtract them: a + b + c = 945 840 = 105 a+b+c=945-840=\boxed{105} .

Moderator note:

Here's a systematic way of understanding why Alan chose to multiply each equations by a certain scalar multiple:

Consider multiplying the first equation by m m and the second equation by n n ,

3 m a + 7 m b + m c = 315 m , 4 n a + 10 n b + n c = 420 n . 3ma + 7mb + mc = 315m, \quad 4na + 10nb + nc = 420n .

Taking their difference gives a ( 3 m 4 n ) + b ( 7 m 10 n ) + c ( m n ) = 315 420 n a(3m-4n) + b(7m - 10n) + c(m -n) = 315 - 420n . We want to find the value of m m and n n satisfying 3 m 4 n = 7 m 10 n = m n 3m-4n = 7m - 10n = m-n . Solving these equations simultaneously gives m = 3 , n = 2 m=3,n=2 .


Another way to solve question is by using kernels. We can rewrite the 2 given equations as the matrix, [ 3 7 1 4 10 1 ] \begin{bmatrix}{3} && {7} && {1} \\ {4} && {10} && {1}\end{bmatrix} .

The kernel of this matrix consists of all vectors ( a , b , c ) ( a,b,c) for which

[ 3 7 1 4 10 1 ] [ a b c ] = [ 0 0 ] . \begin{bmatrix}{3} && {7} && {1} \\ {4} && {10} && {1}\end{bmatrix} \begin{bmatrix}{a} \\ {b} \\ c \end{bmatrix} = \begin{bmatrix}{0} \\ {0} \end{bmatrix} .

Which can be written in matrix as

[ 3 7 1 315 4 10 1 420 ] R 1 4 R 1 , R 2 3 R 2 [ 12 28 4 1260 12 30 3 1260 ] R 2 R 2 R 1 [ 12 28 4 1260 0 2 1 0 ] \left [ \begin{array} { c c c | c } 3 & 7 & 1 & 315 \\ 4 & 10 & 1 & 420 \\ \end{array} \right ] \stackrel{R_1\ce{->} 4R_1 , R_2 \ce{->} 3R_2 }{\huge \longrightarrow} \left [ \begin{array} { c c c | c } 12 & 28 & 4 & 1260 \\ 12 & 30 & 3 & 1260 \\ \end{array} \right ] \stackrel{R_2 \ce{->} R_2 - R_1}{\huge \longrightarrow } \left [ \begin{array} { c c c | c } 12 & 28 & 4 & 1260 \\ 0 & 2 & -1 & 0 \\ \end{array} \right ]

This tells us that 2 y = z 2y = z . By introducing a dummy variable t t , we can write ( y , z ) = ( 2 t , t ) (y,z) = (2t,t ) . Substituting these values into 3 x + 7 y + z = 315 3x+7y + z = 315 gives x = 105 3 t x = 105 - 3t . Hence,

x + y + z = ( 105 3 t ) + ( 2 t ) + ( t ) = 105 . x + y + z = (105 - 3t) + (2t ) + (t) = \boxed{105} .

Good solution.

Chew-Seong Cheong - 5 years, 1 month ago

Thank you Alan for the solution and thank you to challenge master for the systematic way

Pil Pinas - 4 years, 11 months ago

It is given that: { 3 a + 7 b + c = 315 . . . ( 1 ) 4 a + 10 b + c = 420 . . . ( 2 ) a + b + c = ? . . . ( 3 ) \begin{cases} 3a + 7b + c = 315 & ...(1) \\ 4a + 10b + c = 420 &...(2) \\ a+b+c = ? &...(3) \end{cases}

Then, we have:

( 2 ) ( 1 ) : a + 3 b = 105 a = 105 3 b ( 1 ) : 3 ( 105 3 b ) + 7 b + c = 315 315 9 b + 7 b + c = 315 2 b + c = 0 c = 2 b \begin{aligned} (2)-(1): \quad \quad \quad \quad \, \, a + 3b & = 105 \\ \implies \color{#3D99F6}{a} & = \color{#3D99F6}{105 - 3b} \\ (1): \quad 3(\color{#3D99F6}{105 - 3b}) + 7b + c & = 315 \\ 315 -9b + 7b + c & = 315 \\ -2b + c & = 0 \\ \implies \color{#D61F06}{c} & = \color{#D61F06}{2b} \end{aligned}

Now,

( 3 ) : a + b + c = 105 3 b + b + 2 b = 105 \begin{aligned} (3): \quad \color{#3D99F6}{a} + b + \color{#D61F06}{c} & = \color{#3D99F6}{105 - 3b} + b + \color{#D61F06}{2b} \\ & = \boxed{105} \end{aligned}

Emanuel Dicker
May 3, 2016

Given:
3 a + 7 b + c = 315 3a + 7b + c = 315
4 a + 10 b + c = 420 4a + 10b + c = 420

4 ( 3 a + 7 b ) = 4 ( 315 c ) 4(3a + 7b) = 4(315 -c)
+ 3 ( 4 a + 10 b ) = 3 ( 420 c ) + -3(4a + 10b) = -3(420 - c)
= =
12 a 12 a + 28 b 30 b = 1260 1260 4 c + 12 c = 12a -12a +28b - 30b = 1260-1260 -4c + 12c =
2 b = 8 c -2b = 8c
~~ c = . 25 b c= -.25b

4 a + 10 b + c = 420 4a + 10b + c = 420
3 a + 7 b + c = 315 - 3a + 7b + c = 315
= a + 3 b = 105 = a + 3b = 105
~~ 3 b = 105 a 3b = 105- a
b = 35 1 / 3 a b = 35- 1/3a

4 a + 10 b + c = 420 4a + 10b + c = 420
a + 3 b = 105 - a + 3b= 105
= 3 a + 7 b = 315 = 3a + 7b = 315
3 a + 7 ( 35 1 / 3 a ) = 315 3a + 7(35-1/3a) = 315
2 / 3 a = 70 2/3a = 70
a = 105 a = 105

a + 3 b = 105 a + 3b = 105
105 + 3 b = 105 105 + 3b = 105
3 b = 0 3b = 0
b = 0 b= 0

4 a + 10 b + c = 420 4a + 10b +c = 420

4 ( 105 ) + 10 ( 0 ) + c = 420 4(105) + 10(0) + c = 420
420 + c = 420 420 + c = 420
c = 0 c = 0

Thus, a + b + c = 105 a + b + c = 105

Nice answer

Fidel Simanjuntak - 5 years, 1 month ago

Log in to reply

In Response to Fidel Simanjuntak: Thanks!

Emanuel Dicker - 5 years, 1 month ago
Zain Majumder
Oct 19, 2017

After subtracting equation 1 from equation 2, we get:

a + 3 b = 105 a+3b=105

2 a + 6 b = 210 2a+6b=210

Expand the first equation to get:

2 a + 6 b + a + b + c = 315 2a+6b+a+b+c=315

210 + a + b + c = 315 210+a+b+c=315

a + b + c = 105 a+b+c= \boxed{105} .

Kamlesh Tiwari
May 19, 2016

3a + 7b +c = 315 --- (1)

4a + 10b + c = 420 --- (2)

a + b + c = ? --- (3)

Now, Eq (2) - Eq (1) => a + 3b = 105
Multiply this equation by 3

                   => 3a + 9b = 315       --(4)

Now, Eq (2) - Eq (4) : 4a + 10b + c - 3a - 9b = 420 - 315

                            => a + b + c = 105
Amed Lolo
May 18, 2016

eq#(2)-eq#(1)=4a+10b+c-3a-7b-c=420-315. =105,,,,so a+3b=105,,,a+b+c=U(eq#3). eq#1-eq#3,,,2a+6b=315-U=2(a+3b). 315-U=2×105,,,,,SO. U=315-210=105######

谦艺 伍
May 13, 2016

Let (1) denote the first equation and (2) denote the second equation.

(2) - (1): ( 4 a + 10 b + c ) ( 3 a + 7 b + c ) = 420 315 (4a+10b+c)-(3a+7b+c) = 420-315 a + 3 b = 105...... ( 3 ) a+3b=105......(3) ( 1 ) 2 × ( 3 ) : (1) - 2\times(3): ( 3 a + 7 b + c ) 2 ( a + 3 b ) = 315 2 ( 105 ) (3a+7b+c)-2(a+3b) = 315-2(105) a + b + c = 105 a+b+c=105

Ramiel To-ong
May 11, 2016

nice solution.

Sabhrant Sachan
May 5, 2016

From 1st Equation 3 a + 7 b + c = 315 c = 315 7 b 3 a Subtract 1st and 2nd Equation , we get : a + 3 b = 105 Put Value of c in equation 3 a + b + 315 3 a 7 b 2 ( a + 3 b ) + 315 2 × 105 + 315 Ans = 105 \text {From 1st Equation } 3a+7b+c=315 \\ \implies c=315-7b-3a \\ \text {Subtract 1st and 2nd Equation , we get : } \\ \implies a+3b=105 \\ \text {Put Value of c in equation 3 } \\ \implies a+b+315-3a-7b \\ \implies -2(a+3b)+315 \\ \implies -2\times105+315 \\ \color{#3D99F6}{\boxed{\text{Ans = } 105 }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...