Find...

Algebra Level 3

If a + b + c =11 and ab + bc + ac = 25,then find the value of a^3 + b^3 + c^3 – 3abc


The answer is 506.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Dec 30, 2013

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c a c ) = ( a + b + c ) ( ( a + b + c ) 2 2 ( a b + a b + b c ) ( a b + a c + b c ) ) = ( a + b + c ) ( ( a + b + c ) 2 3 ( a b + a b + b c ) ) = ( 11 ) ( ( 11 ) 2 3 ( 25 ) ) = 506 \begin{aligned} a^3+b^3+c^3-3abc & = & (a+ b+c)(a^2+b^2+c^2-ab-bc-ac) \\ & = & (a+b+c) \left ( (a+b+c)^2-2(ab+ab+bc) - (ab+ac+bc) \right ) \\ & = & (a+b+c) \left ( (a+b+c)^2-3(ab+ab+bc) \right ) \\ & = & (11) \left ( (11)^2-3(25) \right ) \\ & = & \boxed{506} \\ \end{aligned}

great

Mayankk Bhagat - 7 years, 2 months ago

real awesome

Krishna Ramesh - 7 years, 1 month ago

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( ( a + b + c ) 2 3 ( a b + b c + c a ) ) = 11 × ( 1 1 2 3 × 25 ) = 506 \displaystyle \begin{aligned} a^3+b^3+c^3-3abc &= (a+b+c) \left((a+b+c)^2 - 3(ab+bc+ca) \right) \\ &= 11 \times (11^2 - 3 \times 25) \\ &= 506 \end{aligned}

Budi Utomo
Dec 31, 2013

(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac) = ----> 11^2 = a^2 + b^2 + c^2 + 2(50)----> a^2 + b^2 + c^2 = 121 - 50 = 71 ---> Next, (a^2 + b^2 + c^2)(a+b+c) = a^3 + b^3 + c^3 + a^2.b + a^2.c + b^2.a + b^2.c + c^2.a + c^2.b ----> 71.11 = a^3 + b^3 + c^3 + ab(a+b) + bc(b+c) + ac(a+c) ---> 781 = a^3 + b^3 + c^3 + ab(11-c) + bc(11-a) + ac(11-b) ---> 781 = a^3 + b^3 + c^3 - 3.abc +11(ab + bc + ac) ---> 781 = a^3 + b^3 + c^3 - 3.abc +11.25 ----> 781-275 = a^3 + b^3 + c^3 - 3.abc ----> a^3 + b^3 + c^3 - 3.abc = 781 - 275 = 506. ANSWER : 506

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...