Find ABC

Algebra Level 3

a , b , c a,\quad b,\quad c are real numbers in the following equation system:

{ a b ( a + b + c ) = 1001 b c ( a + b + c ) = 2002 c a ( a + b + c ) = 3003 \begin{cases} ab\left( a+b+c \right) =1001 \\ bc\left( a+b+c \right) =2002 \\ ca\left( a+b+c \right) =3003 \end{cases}

Find a b c abc


The answer is 546.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Multiply the three equations:

a 2 b 2 c 2 ( a + b + c ) 3 = 1001 2002 3003 a^2b^2c^2(a+b+c)^3=1001\cdot2002\cdot3003

Now, multiply the three equations, two at time:

a b 2 c ( a + b + c ) 2 = 1001 2002 a 2 b c ( a + b + c ) 2 = 1001 3003 a b c 2 ( a + b + c ) 2 = 2002 3003 ab^2c(a+b+c)^2=1001\cdot2002\\ a^2bc(a+b+c)^2=1001\cdot3003\\ abc^2(a+b+c)^2=2002\cdot3003

Sum those three equations:

a b c ( a + b + c ) 3 = 1001 2002 + 1001 3003 + 2002 3003 abc(a+b+c)^3=1001\cdot2002+1001\cdot3003+2002\cdot3003

Finally, divide the first equation we obtained by this one:

a b c = 1001 2002 3003 1001 2002 + 1001 3003 + 2002 3003 a b c = 546 abc= \dfrac{1001\cdot2002\cdot3003}{1001\cdot2002+1001\cdot3003+2002\cdot3003} \\ abc=\boxed{546}

1001 / a b = 2002 / b c = 3003 / c a 1001/ab=2002/bc=3003/ca 1 / a b = 2 / b c = 3 / c a 1/ab=2/bc=3/ca 2 a = c = 3 b 2a=c=3b 2 a 2 ( a + 2 a + 2 / 3 a ) = 3003 2a^2(a+2a+2/3a)=3003 22 a 3 = 9009 22a^3=9009 a b c = a 2 a ( 2 / 3 ) a = ( 4 / 3 ) a 3 = ( 9009 / 22 ) ( 4 / 3 ) = 3003 2 / 11 = 6006 / 11 = 546 abc=a*2a*(2/3)a=(4/3)a^3=(9009/22)*(4/3)=3003*2/11=6006/11=\boxed{546}

Exactly the same way.

Kushagra Sahni - 5 years, 11 months ago
Aareyan Manzoor
Jan 14, 2015

lets take ratios, very simply, we can get that a b : b c : c a = 1 : 2 : 3 ab:bc:ca=1:2:3 now separate the ratios a b : b c = 1 : 2 a : c = 1 : 2 ab:bc=1:2\longrightarrow a:c=1:2 c a : b c = 3 : 2 a : b = 3 : 2 ca:bc=3:2\longrightarrow a:b=3:2 add these ratios to get a : b : c = 3 : 2 : 6 a:b:c=3:2:6 and hence, a = 3 2 b , c = 3 b , b = b a=\dfrac{3}{2} b,c=3b,b=b so, a b c = 9 2 b 3 abc=\dfrac{9}{2}b^3 now solve any 1 equation, b c ( a + b + c ) = 2002 3 b 2 × 11 2 b = 2002 bc(a+b+c)=2002\longrightarrow 3b^2\times \dfrac{11}{2}b=2002 and solve b 3 = 364 3 b^3= \dfrac{364}{3} now insert it, a b c = 9 2 b 3 = 9 2 × 364 3 = 546 abc=\dfrac{9}{2}b^3=\dfrac{9}{2}\times\dfrac{364}{3}=\boxed{546}

Wei Xian Lim
Jan 12, 2015

Dividing the first equation by the second and the first by the third, we obtain

a = 1 2 c a=\frac{1}{2}c and b = 1 3 c b=\frac{1}{3}c

Substituting these values into the first equation, we obtain

1001 = a b ( a + b + c ) 1001=ab(a+b+c)

= a b ( 1 2 c + 1 3 c + c ) \qquad=ab(\frac{1}{2}c+\frac{1}{3}c+c)

= 11 6 a b c \qquad=\frac{11}{6}abc

Hence, a b c = 546 abc=\boxed{546}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...