Find an equation knowing its solutions

Algebra Level 3

x 4 + a x 2 + b = 0 x^4 + ax^2 + b = 0

If 6 3 2 + 3 2 + 2 + 3 \sqrt{6-3\sqrt{2+\sqrt{3}}} - \sqrt{2+\sqrt{2+\sqrt{3}}} is a solution to the equation above, where a a and b b are integers, find a + b a+b . If you think there is no solution, type 0 0


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tin Le
Nov 6, 2020

x = 6 3 2 + 3 2 + 2 + 3 = 3 2 2 + 3 2 + 2 + 3 x=\sqrt{6-3\sqrt{2+\sqrt{3}}} - \sqrt{2+\sqrt{2+\sqrt{3}}} = \sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}} - \sqrt{2+\sqrt{2+\sqrt{3}}}

x 2 = 3 ( 2 2 + 3 ) + 2 + 2 + 3 2 3 ( 2 2 + 3 ) ( 2 + 2 + 3 ) \Rightarrow x^2= 3(2-\sqrt{2+\sqrt{3}}) + 2 + \sqrt{2+\sqrt{3}} - 2\sqrt{3}\sqrt{(2-\sqrt{2+\sqrt{3}})(2+\sqrt{2+\sqrt{3}})}

x 2 = 8 2 2 + 3 2 3 2 3 \Leftrightarrow x^2= 8-2\sqrt{2+\sqrt{3}} - 2\sqrt{3}\sqrt{2-\sqrt{3}}

x 2 8 = 2 ( 2 + 3 + 3 2 3 ) \Leftrightarrow x^2- 8 = -2(\sqrt{2+\sqrt{3}} +\sqrt{3}\sqrt{2-\sqrt{3}})

( x 2 8 ) 2 = 4 ( 2 + 3 + 3 2 3 ) 2 \Rightarrow (x^2-8)^2 = 4(\sqrt{2+\sqrt{3}} +\sqrt{3}\sqrt{2-\sqrt{3}})^2

x 4 16 x 2 + 64 = 4 [ 2 + 3 + 3 ( 2 3 ) + 2 3 ( 2 + 3 ) ( 2 3 ) ] \Leftrightarrow x^4-16x^2+64 = 4[2+\sqrt{3} + 3 (2-\sqrt{3}) + 2\sqrt{3}\sqrt{(2+\sqrt{3})(2-\sqrt{3})}]

x 4 16 x 2 + 64 = 4 ( 8 2 3 + 2 3 ) = 4 × 8 = 32 \Leftrightarrow x^4 - 16x^2 + 64 = 4(8-2\sqrt{3} + 2\sqrt{3}) = 4\times8 = 32

x 4 16 x 2 + 32 = 0 \Leftrightarrow x^4 -16x^2 + 32 = 0

( a , b ) = ( 16 , 32 ) \Rightarrow (a,b) = (-16,32)

Therefore, the answer is ( 16 ) + 32 = 16 (-16) + 32 = \boxed{16}

Let x 1 = 6 3 2 + 3 2 + 2 + 3 x_1 = \sqrt{6-3\sqrt{2+\sqrt 3}} - \sqrt{2+\sqrt{2+\sqrt 3}} . Then

x 1 2 = 6 3 2 + 3 2 3 ( 2 2 + 3 ) ( 2 + 2 + 3 ) + 2 + 2 + 3 = 8 2 2 + 3 2 6 3 3 = 8 2 ( 2 + 3 + 6 3 3 ) 2 = 8 4 2 \begin{aligned} x_1^2 & = 6 - 3\sqrt{2+\sqrt 3} - 2 \sqrt{3\left(2-\sqrt{2+\sqrt 3}\right)\left(2+\sqrt{2+\sqrt 3}\right)}+ 2+\sqrt{2+\sqrt 3} \\ & = 8 - 2\sqrt{2+\sqrt 3} - 2 \sqrt{6-3\sqrt 3} \\ & = 8 - 2\sqrt{\left(\sqrt{2+\sqrt 3} + \sqrt{6-3\sqrt 3}\right)^2} \\ & = 8 -4\sqrt 2 \end{aligned}

We note that x 1 2 x_1^2 is a root of ( x 2 ) 2 + a x 2 + b = 0 (x^2)^2 + a x^2 + b = 0 , a quadratic equation of x 2 x^2 . Since coefficients a a and b b are rational, we can expect the other root of the quadratic equation be x 2 2 = 8 + 4 3 x_2^2 = 8 + 4\sqrt 3 and the quadratic equation is:

( x 2 8 + 4 2 ) ( x 2 8 4 2 ) = 0 x 4 16 x 2 + 32 = 0 \begin{aligned} \left(x^2 - 8 + 4\sqrt 2\right)\left(x^2 - 8 - 4\sqrt 2\right) & = 0 \\ x^4 - 16x^2 + 32 & = 0 \end{aligned}

Therefore a + b = 16 + 32 = 16 a+b = -16 + 32 = \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...