x 4 + a x 2 + b = 0
If 6 − 3 2 + 3 − 2 + 2 + 3 is a solution to the equation above, where a and b are integers, find a + b . If you think there is no solution, type 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let x 1 = 6 − 3 2 + 3 − 2 + 2 + 3 . Then
x 1 2 = 6 − 3 2 + 3 − 2 3 ( 2 − 2 + 3 ) ( 2 + 2 + 3 ) + 2 + 2 + 3 = 8 − 2 2 + 3 − 2 6 − 3 3 = 8 − 2 ( 2 + 3 + 6 − 3 3 ) 2 = 8 − 4 2
We note that x 1 2 is a root of ( x 2 ) 2 + a x 2 + b = 0 , a quadratic equation of x 2 . Since coefficients a and b are rational, we can expect the other root of the quadratic equation be x 2 2 = 8 + 4 3 and the quadratic equation is:
( x 2 − 8 + 4 2 ) ( x 2 − 8 − 4 2 ) x 4 − 1 6 x 2 + 3 2 = 0 = 0
Therefore a + b = − 1 6 + 3 2 = 1 6 .
Problem Loading...
Note Loading...
Set Loading...
x = 6 − 3 2 + 3 − 2 + 2 + 3 = 3 2 − 2 + 3 − 2 + 2 + 3
⇒ x 2 = 3 ( 2 − 2 + 3 ) + 2 + 2 + 3 − 2 3 ( 2 − 2 + 3 ) ( 2 + 2 + 3 )
⇔ x 2 = 8 − 2 2 + 3 − 2 3 2 − 3
⇔ x 2 − 8 = − 2 ( 2 + 3 + 3 2 − 3 )
⇒ ( x 2 − 8 ) 2 = 4 ( 2 + 3 + 3 2 − 3 ) 2
⇔ x 4 − 1 6 x 2 + 6 4 = 4 [ 2 + 3 + 3 ( 2 − 3 ) + 2 3 ( 2 + 3 ) ( 2 − 3 ) ]
⇔ x 4 − 1 6 x 2 + 6 4 = 4 ( 8 − 2 3 + 2 3 ) = 4 × 8 = 3 2
⇔ x 4 − 1 6 x 2 + 3 2 = 0
⇒ ( a , b ) = ( − 1 6 , 3 2 )
Therefore, the answer is ( − 1 6 ) + 3 2 = 1 6