Find and find again

n = 0 100 n ! \large{\displaystyle \sum_{n=0}^{100}n!}

If the last 2 digits of the sum above is x x , find the last 2 digits of:

m = 0 100 m x \large{\displaystyle \sum_{m=0}^{100}m^x}


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Josh Banister
Jun 7, 2016

When n 10 n \geq 10 then by definition 25 n ! 25 | n! and 4 n ! 4|n! so 100 n ! 100 | n! . Therefore the last two digits of n ! n! is 0 0 when n 10 n \geq 10 . By calculating directly, we get x = 14 x = 14 .

Now to find the last 2 digits of m = 0 100 m 14 \sum^{100}_{m=0} m^{14} , since 10 0 14 0 m o d 100 100^{14} \equiv 0 \mod 100 , we have by using the binomial theorem: m = 0 100 m 14 r = 0 9 b = 0 9 ( 10 b + r ) 14 m o d 100 r = 0 9 b = 0 9 140 b r 13 + r 14 m o d 100 r = 0 9 45 × 140 r 13 + 10 × r 14 m o d 100 r = 0 9 10 r 14 m o d 100 \begin{aligned} \sum^{100}_{m=0} m^{14} &\equiv \sum^9_{r=0} \sum^9_{b=0} (10b+r)^{14} & \mod 100 \\ &\equiv \sum^9_{r=0} \sum^9_{b=0} 140br^{13} + r^{14} & \mod 100 \\ &\equiv \sum^9_{r=0} 45 \times 140r^{13} + 10 \times r^{14} & \mod 100 \\ &\equiv \sum^9_{r=0}10r^{14} & \mod 100 \end{aligned}

Since last digit of the value we're looking is going to be 0 0 , we only need to find the last digit of r = 0 9 r 14 \sum^9_{r=0}r^{14} which gives us our second to last digit. This doesn't take long at all as x 5 x m o d 10 x 13 x m o d 10 x 14 x 2 m o d 10 x^5 \equiv x \mod 10 \implies x^{13} \equiv x \mod 10 \implies x^{14} \equiv x^2 \mod 10 so r = 0 9 r 14 r = 0 9 r 2 9 × 10 × 19 6 285 5 m o d 10 \sum^9_{r=0}r^{14} \equiv \sum^9_{r=0}r^{2} \equiv \frac{9 \times 10 \times 19}{6} \equiv 285 \equiv 5 \mod 10 Hence the last 2 digits of m = 0 100 m 14 \sum^{100}_{m=0} m^{14} is 50 50 .

Wow, I've never seen that binomial theorem used like that. Ingenious.

Trevor Arashiro - 5 years ago

That is such an elegant solution, I especially love the x^14 = x^2 mod 10 part, I'm amazed

Harry Stuart - 5 years ago
Tom Van Lier
Jun 21, 2016

From 10 ! 10! on, all factorials are divisible by 100, so they won't influence the last two digits of the first sum.

Since \sum_\limits{n = 0}^9 n! = 409114, it immediately follows that x = 14 x = 14 .

Now we notice that m 14 = ( m 2 ) 7 m^{14} = (m^2)^{7} .

We also notice, that with

a { 1 , 2 , 3 , 4 } a \in \{1,2,3,4\} and b { 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 } : b \in \{10,20,30,40,50,60,70,80,90\} :

( b + a ) 2 = b 2 + 2 a b + a 2 (b + a)^2 = b^2 + 2ab + a^2 and ( b a ) 2 = b 2 2 a b + a 2 (b - a)^2 = b^2 - 2ab + a^2 .

This means that

( b + a ) 14 ( b 2 + 2 a b + a 2 ) 7 7. ( b 2 + 2 a b + a 2 ) m o d 100 (b + a)^{14} \equiv (b^2 + 2ab + a^2)^7 \equiv 7.(b^2 + 2ab + a^2) \mod 100 and

( b a ) 14 ( b 2 2 a b + a 2 ) 7 7. ( b 2 2 a b + a 2 ) m o d 100 (b - a)^{14} \equiv (b^2 - 2ab + a^2)^7 \equiv 7.(b^2 - 2ab + a^2) \mod 100 .

So [ ( b + a ) 14 + ( b a ) 14 ] 14 a 2 2 a 14 m o d 100. [(b + a)^{14} +(b - a)^{14} ] \equiv 14 a^2 \equiv 2 a^{14} \mod 100.

Moreover , we can see that

9 6 14 7. ( 100 4 ) 2 7. ( 10000 400 + 4 2 ) 7. 4 2 4 14 m o d 100 96^{14} \equiv 7 . (100 - 4)^2 \equiv 7 . (10000 - 400 + 4^2) \equiv 7 . 4^2 \equiv 4^{14} \mod 100 .

We can deduce similar results for 97,98 and 99, with 3,2,1 (it is left as an exercise for the reader).

We get \begin{aligned} \sum_\limits{m = 0}^{100} m^{14} & \equiv 20.(1^{14} + 2^{14} + 3^{14} + 4^{14}) + \sum_\limits{i = 0}^{9}(10i+5)^{14} & \mod 100 \\ & \equiv 200 + \sum_\limits{i = 0}^{9}(10i+5)^{14} & \mod 100 \\ & \equiv \sum_\limits{i = 0}^{9}(10i+5)^{14} & \mod 100 \\ & \equiv 10 . 5^{14} & \mod 100 \\ & \equiv 70. 25 & \mod 100 \\ & \equiv 50 & \mod 100. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...