Find A B C \angle ABC

Geometry Level 2

In A B C \triangle ABC , A B = 3 , B C = 2 \overline{AB} = 3 , \overline{BC} = 2 and A C B = 11 0 \angle ACB = 110^{\circ} . Find A B C \angle ABC in degrees.


The answer is 31.21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Toby M
Dec 6, 2020

Sine rule gives sin B A C 2 = sin 110 º 3 B A C = arcsin 2 sin 110 º 3 38.79 º \frac{\sin \angle BAC}{2} = \frac{\sin 110º}{3} \Rightarrow \angle BAC = \arcsin \frac{2 \sin 110º}{3} \approx 38.79º . Therefore A B C = 180 º 110 º B A C 31.21 º \angle ABC = 180º - 110º - \angle BAC \approx 31.21º .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...