Find B A C \angle BAC

Geometry Level 3

As shown in the figure above, point D D is any point within B A C \angle BAC and A D = 5 AD=5 , while E E and F F are the moving points on A B AB and A C AC respectively. If the shortest perimeter of D E F \triangle DEF is 5 5 , find the measure of B A C \angle BAC in degree.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The photo of explanation The photo of explanation Let D D' and D D'' be the reflection of D D about A B AB and A C AC respectively. Then, min ( C D E F ) = min ( D E + E F + F D ) = min ( D E + E F + F D ) = D D = 5 \min {\left( C_{\triangle DEF}\right)} = \min {\left( DE+EF+FD \right)} = \min {\left( D'E+EF+FD'' \right)} = D'D'' = 5 . Observe that A D D \triangle AD'D'' is a equilateral triangle, therefore D A D " = 60 ° \angle D'AD"=60\degree . Also, by the reflection, B A D = B A D \angle BAD=\angle BAD' and C A D = C A D \angle CAD=\angle CAD'' . Therefore, D A D " = B A D + B A D + C A D + C A D = 2 ( B A D + C A D ) = 2 B A C = 2 α ° = 60 ° α = 30 \angle D'AD"=\angle BAD+\angle BAD'+\angle CAD+\angle CAD''=2\left( \angle BAD+\angle CAD \right) = 2\angle BAC = 2\alpha\degree =60\degree \rightarrow \alpha=\boxed{30}

Chew-Seong Cheong
Aug 12, 2019

Consider A B C \triangle ABC with side lengths a a , b b , and c c . With a common base b b , using AM-GM inequality , we have a + c 2 a c a+c \ge 2\sqrt{ac} . That is the shortest a + c a+c occurs when a = c a=c or for a common base, an isosceles triangle has the shortest perimeter. Therefore for a common base E F EF , the shortest perimeter occurs when D E F \triangle DEF is isosceles or A D AD bisects B A C \angle BAC and E F A D EF \perp AD . Let E F EF cuts A D AD at P P , A P = x AP=x , and E P = y EP = y . Then the perimeter of D E F \triangle DEF is given by p = 2 y + 2 y 2 + ( 5 x ) 2 p = 2y + 2\sqrt{y^2 + (5-x)^2} . Let B A C = θ \angle BAC = \theta and t = tan θ 2 t = \tan \frac \theta 2 ; then y = x tan θ 2 = t x y = x \tan \frac \theta 2 = tx and:

p 2 = t x + t 2 x 2 + ( 5 x ) 2 1 2 d p d x = t + t 2 x + x 5 t 2 x 2 + ( 5 x ) 2 \begin{aligned} \frac p2 & = tx + \sqrt{t^2x^2 + (5-x)^2} \\ \frac 12 \cdot \frac {dp}{dx} & = t + \frac {t^2x + x - 5}{\sqrt{t^2x^2 + (5-x)^2}} \end{aligned}

Extrema occur when d p d x = 0 \dfrac {dp}{dx} = 0 , we have:

t t 2 x 2 + ( 5 x ) 2 = ( t 2 x + x 5 ) Squaring both sides t 2 ( 1 + t 2 ) x 2 10 t 2 x + 25 t 2 = ( 1 + 2 t 2 + t 4 ) x 2 10 ( 1 + t 2 ) x + 25 ( 1 + t 2 ) x 2 10 x + 25 ( 1 t 2 ) = 0 ( x 5 ) 2 + t 2 ( x 2 25 ) = 0 ( x 5 ) ( x 5 + t 2 ( x + 5 ) ) = 0 \begin{aligned} t \sqrt{t^2x^2 + (5-x)^2} & = -(t^2x + x - 5) & \small \color{#3D99F6} \text{Squaring both sides} \\ t^2(1+t^2) x^2 - 10t^2 x + 25t^2 & = (1+2t^2+t^4)x^2 - 10(1+t^2)x + 25 \\ (1+t^2)x^2 - 10x + 25(1-t^2) & = 0 \\ (x-5)^2 + t^2(x^2 - 25) & = 0 \\ (x-5)(x-5 + t^2(x+5)) & = 0 \end{aligned}

{ x = 5 p = 20 t when p is maximum. x = 5 ( 1 t 2 ) 1 + t 2 p = 20 t 1 + t 2 when p is minimum. \implies \begin{cases} x = 5 & \implies p = 20 t & \small \color{#3D99F6} \text{when }p \text{ is maximum.} \\ x = \dfrac {5(1-t^2)}{1+t^2} & \implies p = \dfrac {20t}{1+t^2} & \small \color{#3D99F6} \text{when }p \text{ is minimum.} \end{cases}

Therefore, 20 t 1 + t 2 = 10 sin θ = 5 sin θ = 1 2 θ = 30 \dfrac {20t}{1+t^2} = 10 \sin \theta = 5 \implies \sin \theta = \frac 12 \implies \theta = \boxed{30}^\circ .

8 S S/abc=5(perimeter of triangle orthique) ;S=absinC/2=5*c/2;donc:sinC=1/2-----C=30

Abdelali Derias - 1 year, 10 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...