find angle BCD

Geometry Level 2


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let A B = A C = 2 x , B C = 2 y , B C D = α |\overline {AB}|=|\overline {AC}|=2x, |\overline {BC}|=2y, \angle {BCD}=α . Then, applying sine rule to B D C \triangle {BDC} , we get

y cos B = 2 y cos ( B α ) y cos ( B α ) = 2 y cos B \dfrac{y}{\cos B}=\dfrac{2y}{\cos (B-α)}\implies y\cos (B-α)=2y\cos B . So,

B D = x , C D = y |\overline {BD}|=x, |\overline {CD}|=y . We have A B C = A C B = B , B A C = 180 ° 2 B \angle {ABC}=\angle {ACB}=B, \angle {BAC}=180\degree-2B .

Then we have y cos B = x ( 1 + cos 2 B ) y = 2 x cos B y\cos B=x(1+\cos 2B)\implies y=2x\cos B (from A C = A E + E C 2 x = 2 x cos ( 180 ° 2 B ) + y cos ( B α ) = 2 x cos 2 B + 2 y cos B |\overline {AC}|=|\overline {AE}|+|\overline {EC}|\implies 2x=2x\cos (180\degree-2B)+y\cos (B-α)=-2x\cos 2B+2y\cos B ).

Applying sine rule to B D C \triangle {BDC} we get x sin B C D = y cos B = 2 x cos B cos B sin B C D = 1 2 B C D = 30 ° \dfrac {x}{\sin \angle {BCD}}=\dfrac{y}{\cos B}=\dfrac{2x\cos B}{\cos B}\implies \sin \angle {BCD}=\dfrac{1}{2}\implies \angle {BCD}=\boxed {30\degree} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...