Find angle in two triangles

Geometry Level 4

D A C = 2 0 , D C A = 3 0 , A B C = 5 0 , A D = B C \angle DAC = 20^\circ, \angle DCA = 30^\circ, \angle ABC = 50^\circ , AD = BC .

Find the measure of D C B \angle DCB in degrees.


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Choi Chakfung
May 13, 2016

c o n s t u c t a p o i n t E w h e r e A E = C B , E C = A B a n d A E / / B C , E C / / A B A E C B i s / / g r a m . A B C = A E C = 50 ° A D C = 180 ° 20 ° 30 ° = 130 ° A D C + A E C = 180 ° A D C E i s c o n c y c l i c A D = B C = A E A C D = A C E = 30 ° E A C = 180 ° 30 ° 50 ° = 100 ° A C B = E A C = 100 ° D C B = 100 ° 30 ° = 70 ° constuct\quad a\quad point\quad E\quad where\quad AE=CB,EC=AB\quad and\quad AE//BC,EC//AB\\ \Rightarrow AECB\quad is\quad //gram.\Rightarrow \angle ABC=AEC=50°\\ \angle ADC=180°-20°-30°=130°\\ \angle ADC+\angle AEC=180°\Rightarrow ADCE\quad is\quad concyclic\\ \because AD=BC=AE\Rightarrow ACD=ACE=30°\Rightarrow EAC=180°-30°-50°=100°\\ ACB=EAC=100°\Rightarrow DCB=100°-30°=70°

Excellent problem and solution! (+1)

Swapnil Das - 5 years ago

smart way of answering this question

Syed Hamza Khalid - 4 years, 1 month ago

Applying the law of sines to the triangle ACD, we obtain

(1) A D sin ( D C A ) = A C sin ( A D C ) \frac{AD}{\sin(\angle DCA)} = \frac{AC}{\sin(\angle ADC)} ,

or, since D C A = 3 0 \angle DCA = 30^{\circ} and A D C = 18 0 D A C D C A = 13 0 \angle ADC = 180^{\circ} - \angle DAC - \angle DCA = 130^{\circ} ,

(2) A D A C = sin 3 0 sin 13 0 \frac{AD}{AC} = \frac{\sin 30^{\circ}}{\sin 130^{\circ}} .

Analogously, in the triangle ABC we have

(3) B C sin ( B A C ) = A C sin ( A B C ) \frac{BC}{\sin(\angle BAC)} = \frac{AC}{\sin(\angle ABC)} ,

or, since A B C = 5 0 \angle ABC = 50^{\circ} and B A C = 18 0 A B C A C B = 13 0 A C B \angle BAC = 180^{\circ} - \angle ABC - \angle ACB = 130^{\circ} - \angle ACB ,

(4) B C A C = sin ( 13 0 A C B ) sin 5 0 \frac{BC}{AC} = \frac{\sin(130^{\circ}-\angle ACB)}{\sin 50^{\circ}} .

Since A D = B C AD = BC , it follows from (2) and (4) that

(5) sin 3 0 sin 13 0 = sin ( 13 0 A C B ) sin 5 0 \frac{\sin 30^{\circ}}{\sin 130^{\circ}} = \frac{\sin(130^{\circ}-\angle ACB)}{\sin 50^{\circ}} .

One can simplify (5) by noticing that sin 13 0 = sin 5 0 \sin 130^{\circ} = \sin 50^{\circ} , so that sin 3 0 = sin ( 13 0 A C B ) \sin 30^{\circ} = \sin(130^{\circ}-\angle ACB) , from which follows A C B = 10 0 \angle ACB = 100^{\circ} . Finally, we obtain the desired result by subtracting D C A \angle DCA from A C B \angle ACB :

(6) D C B = A C B D C A = 10 0 3 0 = 7 0 . \angle DCB = \angle ACB - \angle DCA = 100^{\circ} - 30^{\circ} = 70^{\circ}. \,\square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...