find angle x in triangle

Geometry Level 2

Find x x in degrees.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 10, 2020

Label the figure as above. We note that

x = B E G B E F = tan 1 ( B G E B ) tan 1 ( B F E B ) = tan 1 ( B C tan 3 0 tan 4 0 B C tan 1 0 ) tan 1 ( B C tan 2 0 tan 4 0 B C tan 1 0 ) = tan 1 ( tan 3 0 tan 4 0 tan 1 0 ) tan 1 ( tan 2 0 tan 4 0 tan 1 0 ) = tan 1 ( tan 3 0 tan ( 3 0 + 1 0 ) tan 1 0 ) tan 1 ( tan ( 3 0 1 0 ) tan ( 3 0 + 1 0 ) tan 1 0 ) Let t = tan 1 0 = tan 1 ( 1 3 + t 3 t ( 1 t 3 ) ) tan 1 ( ( 1 3 t ) ( 1 3 + t ) t ( 1 + t 3 ) ( 1 t 3 ) ) then 3 t t 3 1 3 t 2 = 1 3 = tan 1 ( ( 3 t 2 ) ( 1 + 3 t ) ( 1 3 t 2 ) ( 3 t ) ) tan 1 ( 1 3 t 2 t ( 1 t 2 3 ) ) 3 t 2 1 3 t 2 = 1 3 t = tan 1 ( 3 + t 1 3 t ) tan 1 ( 1 3 t 2 3 t t 3 ) = tan 1 ( tan 6 0 + tan 1 0 1 tan 6 0 tan 1 0 ) tan 1 ( cot 3 0 ) = 7 0 6 0 = 10 \begin{aligned} x & = \angle BEG - \angle BEF \\ & = \tan^{-1} \left(\frac {BG}{EB} \right) - \tan^{-1} \left(\frac {BF}{EB} \right) \\ & = \tan^{-1} \left(\frac {BC\tan 30^\circ \tan 40^\circ}{BC\tan 10^\circ} \right) - \tan^{-1} \left(\frac {BC\tan 20^\circ \tan 40^\circ}{BC\tan 10^\circ} \right) \\ & = \tan^{-1} \left(\frac {\tan 30^\circ \tan 40^\circ}{\tan 10^\circ} \right) - \tan^{-1} \left(\frac {\tan 20^\circ \tan 40^\circ}{\tan 10^\circ} \right) \\ & = \tan^{-1} \left(\frac {\tan 30^\circ \tan (30^\circ+10^\circ)}{\tan 10^\circ} \right) - \tan^{-1} \left(\frac {\tan (30^\circ - 10^\circ) \tan (30^\circ+10^\circ)}{\tan 10^\circ} \right) & \small \blue{\text{Let }t = \tan 10^\circ} \\ & = \tan^{-1} \left(\frac {\frac 1{\sqrt 3} + t}{\blue{\sqrt 3 t} \left(1-\frac t{\sqrt 3} \right)} \right) - \tan^{-1} \left(\frac {\left(\frac 1{\sqrt 3} - t\right)\left(\frac 1{\sqrt 3} + t\right)}{t \left(1+\frac t{\sqrt 3} \right)\left(1-\frac t{\sqrt 3} \right)} \right) & \small \blue{\text{then } \frac {3t-t^3}{1-3t^2} = \frac 1{\sqrt 3}} \\ & = \tan^{-1} \left(\frac {\blue{(3-t^2)}(1+\sqrt 3t)}{\blue{(1-3t^2)}(\sqrt 3 - t)} \right) - \tan^{-1} \left(\frac {\frac 13 - t^2}{t \left(1-\frac {t^2} 3 \right)} \right) & \small \blue{\implies \frac {3-t^2}{1-3t^2} = \frac 1{\sqrt 3t}} \\ & = \tan^{-1} \left(\frac {\sqrt 3+t}{1-\sqrt 3t} \right) - \tan^{-1} \left(\frac {1 - 3t^2}{3t-t^3} \right) \\ & = \tan^{-1} \left(\frac {\tan 60^\circ + \tan 10^\circ}{1-\tan 60^\circ \tan 10^\circ} \right) - \tan^{-1} (\cot 30^\circ) \\ & = 70^\circ - 60^\circ = \boxed {10}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...