P and Q are two points on line x - y + 1=0 and are at distance 5 units from the origin. Find the area of the triangle OPQ
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Points of intersection between line y=x+1 and ◯ x 2 + y 2 = 2 5 a r e f r o m x 2 + ( x + 1 ) 2 = 2 5 ⟹ x 1 , 2 = 2 ∗ 2 − 2 ± 2 2 − 4 ( − 2 5 ) ( 2 ) y 1 , 2 = x 1 , 2 + 1 = 2 ∗ 2 2 ± 2 2 − 4 ( − 2 5 ) ( 2 ) ⟹ ( x 1 , y 1 ) = ( − 2 1 + 2 5 1 , 2 1 + 2 5 1 ) . . . ( x 2 , y 2 ) = ( − 2 1 − 2 5 1 , 2 1 − 2 5 1 ) ∴ P Q = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ) = ( 5 1 ) 2 + ( 5 1 ) 2 = 1 0 2 P Q s l o p e i s 1 . ∴ i t m a k e s 4 5 o w i t h X − a x i s , i n t e r s e c t s a x e s a t ( − 1 , 0 ) , ( 0 , 1 ) ∴ ⊥ t o P Q f r o m O = 2 1 ⟹ r e q u i r e d a r e a = 2 1 ∗ b a s e ∗ h e i g h t = 2 1 ∗ 1 0 2 ∗ 2 1 = 3 . 5 7 1