Find BC/AE

Geometry Level 3

In quadrilateral A D B C ADBC , D B E = 1 0 \angle DBE = 10^\circ , D A B = 2 0 \angle DAB=20^\circ , B A C = 4 0 \angle BAC=40^\circ , and A B C = 7 0 \angle ABC=70^\circ . Diagonals A B AB and C D CD intersect at E E .

Find B C A E \dfrac {BC}{AE} .


The answer is 1.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let B C = 1 BC=1 . We note that A B C \triangle ABC is isosceles, therefore A B = A C = csc 2 0 2 AB=AC=\dfrac {\csc 20^\circ}2 . By sine rule , A D A B = sin D B A sin A D B A D = sin 1 0 sin 15 0 × csc 2 0 2 = sec 1 0 2 \dfrac {AD}{AB} = \dfrac {\sin \angle DBA}{\sin \angle ADB} \implies AD = \dfrac {\sin 10^\circ}{\sin 150^\circ} \times \dfrac {\csc 20^\circ}2 = \dfrac {\sec 10^\circ}2 . Let A D C = θ \angle ADC = \theta . By sine rule again:

A C sin θ = A D sin ( 12 0 θ ) 1 2 csc 2 0 sin θ = 1 2 sec 1 0 sin ( 6 0 + θ ) sin ( 6 0 + θ ) sin θ = sin 2 0 cos 1 0 = sin 16 0 sin 8 0 = sin ( 6 0 + 10 0 ) sin 10 0 θ = 10 0 \begin{aligned} \frac {AC}{\sin \theta} & = \frac {AD}{\sin (120^\circ - \theta)} \\ \frac {\frac 12 \csc 20^\circ}{\sin \theta} & = \frac {\frac 12 \sec 10^\circ}{\sin (60^\circ + \theta)} \\ \frac {\sin(60^\circ + \theta)}{\sin \theta} & = \frac {\sin 20^\circ}{\cos 10^\circ} =\frac {\sin 160^\circ}{\sin 80^\circ} = \frac {\sin (60^\circ +100^\circ)}{\sin 100^\circ} \\ \implies \theta & = 100^\circ \end{aligned}

By sine rule again, A E = sin θ sin ( 16 0 θ ) A D = sin 10 0 sin 6 0 × 1 2 cos 1 0 = sin 10 0 3 2 × 1 2 sin 10 0 = 1 3 AE = \dfrac {\sin \theta}{\sin(160^\circ - \theta)}AD = \dfrac {\sin 100^\circ}{\sin 60^\circ} \times \dfrac 1{2 \cos 10^\circ} = \dfrac {\sin 100^\circ}{\frac {\sqrt 3}2} \times \dfrac 1{2 \sin 100^\circ} = \dfrac 1{\sqrt 3}

Therefore, B C A E = 3 1.732 \dfrac {BC}{AE} =\sqrt 3 \approx \boxed{1.732} .

Let B C = a , A B = A C = b , A E = x , B C D = α |\overline {BC}|=a, |\overline {AB}|=|\overline {AC}|=b, |\overline {AE}|=x, \angle {BCD}=α . Then a = 2 b cos 70 ° , A D = 2 b sin 10 ° = b sin ( 70 ° α ) sin ( 50 ° + α ) tan α = sin 70 ° 2 sin 10 ° sin 50 ° cos 70 ° + 2 sin 10 ° cos 50 ° α = 50 ° x = b sin 20 ° sin 60 ° a x = 2 b sin 20 ° sin 60 ° b sin 20 ° = 3 = 1.732 a=2b\cos 70\degree, |\overline {AD}|=2b\sin 10\degree=b\dfrac{\sin (70\degree-α)}{\sin (50\degree+α)}\implies \tan α=\dfrac{\sin 70\degree-2\sin 10\degree\sin 50\degree}{\cos 70\degree+2\sin 10\degree\cos 50\degree}\implies α=50\degree\implies x=\dfrac{b\sin 20\degree}{\sin 60\degree}\implies \dfrac{a}{x}=\dfrac{2b\sin 20\degree\sin 60\degree}{b\sin 20\degree}=\sqrt 3=\boxed {1.732} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...