Find C C

Algebra Level 5

A ( 3 2 ) x 2 + B 3 + 2 x + C = 0 \large A(\sqrt{3}-\sqrt{2})x^2+\frac{B}{\sqrt{3}+\sqrt{2}}x+C=0

If E E and F F are real roots of the quadratic equation above, where A = 49 + 20 6 4 A= \sqrt [4] {49+20\sqrt{6}} and B = 8 3 + 8 6 3 + 16 3 + B=8\sqrt{3}+\dfrac{8\sqrt{6}}{\sqrt{3}}+\dfrac{16}{\sqrt{3}} + \cdots and that E F = ( 6 6 ) k \left|E-F\right|=(6\sqrt{6})^k , where k = log 6 ( 10 ) 2 log 6 ( 5 ) + log 6 log 6 ( 18 ) + log 6 ( 72 ) k=\log _6 \left(10\right)-2\log _6\left(\sqrt{5}\right)+\log _6\sqrt{\log _6\left(18\right)+\log _6\left(72\right)} , find the value of C C .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 11, 2017

Let A = 3 a + 2 b 4 A = \sqrt[4]{\sqrt 3a+\sqrt 2b} . Then A 4 = 9 a 4 + 12 6 a 3 b + 36 a 2 b 2 + 8 6 a b 3 + 4 = 49 + 20 6 A^4 = 9a^4 + 12\sqrt 6a^3b + 36a^2b^2 + 8\sqrt 6ab^3 + 4 = 49 + 20\sqrt 6 . Equating the rational and irrational parts, we have 9 a 4 + 36 a 2 b 2 + 4 = 49 9a^4 + 36a^2b^2 + 4 = 49 and 12 a 3 b + 8 a b 3 = 20 12a^3b + 8 ab^3 = 20 , a = b = 1 \implies a=b=1 , A = 3 + 2 \implies A = \sqrt 3 + \sqrt 2 .

Now consider B B :

B = 8 3 + 8 6 3 + 16 3 + = 2 3 3 1 2 + 2 7 2 3 0 + 2 4 3 1 2 + = 2 3 3 1 2 ( 1 + 2 1 2 3 1 2 + 2 3 1 + ) = 8 3 k = 0 ( 2 3 ) k = 8 3 ( 1 1 2 3 ) = 24 3 2 \begin{aligned} B & = 8\sqrt 3 + \frac {8\sqrt 6}{\sqrt 3} + \frac {16}{\sqrt 3} + \cdots \\ & = 2^3\cdot 3^\frac 12 + 2^\frac 72 \cdot 3^0 + 2^4 \cdot 3^{-\frac 12} + \cdots \\ & = 2^3\cdot 3^\frac 12 \left(1 + 2^\frac 12 \cdot 3^{-\frac 12} + 2 \cdot 3^{-1} + \cdots \right) \\ & = 8\sqrt 3 \sum_{k=0}^\infty \left(\sqrt{\frac 23} \right)^k \\ & = 8\sqrt 3 \left(\frac 1{1-\sqrt{\frac 23}} \right) \\ & = \frac {24}{\sqrt 3-\sqrt 2} \end{aligned}

Then the quadratic equation becomes

A ( 3 2 ) x 2 + B 3 + 2 x + C = 0 ( 3 + 2 ) ( 3 2 ) x 2 + 24 ( 3 + 2 ) ( 3 2 ) x + C = 0 x 2 + 24 x + C = 0 \begin{aligned} A(\sqrt 3-\sqrt 2)x^2 + \frac B{\sqrt 3+\sqrt 2}x + C & = 0 \\ (\sqrt 3+\sqrt 2)(\sqrt 3-\sqrt 2)x^2 + \frac {24}{(\sqrt 3+\sqrt 2)(\sqrt 3-\sqrt 2)}x + C & = 0 \\ \implies x^2 + 24x + C & = 0 \end{aligned}

Consider k k .

k = log 6 10 2 log 6 5 + log 6 log 6 18 + log 6 72 = log 6 2 + log 6 5 log 6 5 + 1 2 log 6 ( log 6 3 + log 6 6 + log 6 2 + 2 log 6 6 ) = log 6 2 + 1 2 log 6 4 = 2 log 6 2 \begin{aligned} k & = \log_6 10 - 2\log_6 \sqrt 5 + \log_6 \sqrt{\log_6 18 + \log_6 72} \\ & = \log_6 2 + \log_6 5 - \log_6 5 + \frac 12 \log_6 (\log_6 3+\log_6 6+\log_6 2+2\log_6 6) \\ & = \log_6 2 + \frac 12 \log_6 4 \\ & = 2 \log_6 2 \end{aligned}

Then E F = ( 6 6 ) k = 6 3 2 k = 6 3 2 × 2 log 6 2 = 6 log 6 8 = 8 |E-F| = (6\sqrt 6)^k = 6^{\frac 32k} = 6^{\frac 32 \times 2 \log_6 2} = 6^{\log_6 8} = 8 .

Now it is given that E E and F F are the roots of the quadratic equation. Then by Vieta's formula, we have E + F = 24 E+F=-24 and E F = C EF=C . Therefore,

{ ( E + F ) 2 = E 2 + 2 E F + F 2 = E 2 + 2 C + F 2 = 2 4 2 E 2 + 2 C + F 2 = 576 . . . ( 1 ) E F 2 = E 2 2 E F + F 2 = E 2 2 C + F 2 = 8 2 E 2 2 C + F 2 = 64 . . . ( 2 ) \begin{cases} (E+F)^2 = E^2 + 2EF + F^2 = E^2 + 2C + F^2 = 24^2 & \implies E^2 + 2C + F^2 = 576 & ...(1) \\ |E-F|^2 = E^2 - 2EF + F^2 = E^2 - 2C + F^2 = 8^2 & \implies E^2 - 2C + F^2 = 64 & ...(2)\end{cases}

( 1 ) ( 2 ) : 4 C = 512 C = 128 \implies (1) - (2): \quad 4C = 512 \implies C = \boxed{128}

Akhil D
Dec 12, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...