A ( 3 − 2 ) x 2 + 3 + 2 B x + C = 0
If E and F are real roots of the quadratic equation above, where A = 4 4 9 + 2 0 6 and B = 8 3 + 3 8 6 + 3 1 6 + ⋯ and that ∣ E − F ∣ = ( 6 6 ) k , where k = lo g 6 ( 1 0 ) − 2 lo g 6 ( 5 ) + lo g 6 lo g 6 ( 1 8 ) + lo g 6 ( 7 2 ) , find the value of C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let A = 4 3 a + 2 b . Then A 4 = 9 a 4 + 1 2 6 a 3 b + 3 6 a 2 b 2 + 8 6 a b 3 + 4 = 4 9 + 2 0 6 . Equating the rational and irrational parts, we have 9 a 4 + 3 6 a 2 b 2 + 4 = 4 9 and 1 2 a 3 b + 8 a b 3 = 2 0 , ⟹ a = b = 1 , ⟹ A = 3 + 2 .
Now consider B :
B = 8 3 + 3 8 6 + 3 1 6 + ⋯ = 2 3 ⋅ 3 2 1 + 2 2 7 ⋅ 3 0 + 2 4 ⋅ 3 − 2 1 + ⋯ = 2 3 ⋅ 3 2 1 ( 1 + 2 2 1 ⋅ 3 − 2 1 + 2 ⋅ 3 − 1 + ⋯ ) = 8 3 k = 0 ∑ ∞ ( 3 2 ) k = 8 3 ⎝ ⎛ 1 − 3 2 1 ⎠ ⎞ = 3 − 2 2 4
Then the quadratic equation becomes
A ( 3 − 2 ) x 2 + 3 + 2 B x + C ( 3 + 2 ) ( 3 − 2 ) x 2 + ( 3 + 2 ) ( 3 − 2 ) 2 4 x + C ⟹ x 2 + 2 4 x + C = 0 = 0 = 0
Consider k .
k = lo g 6 1 0 − 2 lo g 6 5 + lo g 6 lo g 6 1 8 + lo g 6 7 2 = lo g 6 2 + lo g 6 5 − lo g 6 5 + 2 1 lo g 6 ( lo g 6 3 + lo g 6 6 + lo g 6 2 + 2 lo g 6 6 ) = lo g 6 2 + 2 1 lo g 6 4 = 2 lo g 6 2
Then ∣ E − F ∣ = ( 6 6 ) k = 6 2 3 k = 6 2 3 × 2 lo g 6 2 = 6 lo g 6 8 = 8 .
Now it is given that E and F are the roots of the quadratic equation. Then by Vieta's formula, we have E + F = − 2 4 and E F = C . Therefore,
{ ( E + F ) 2 = E 2 + 2 E F + F 2 = E 2 + 2 C + F 2 = 2 4 2 ∣ E − F ∣ 2 = E 2 − 2 E F + F 2 = E 2 − 2 C + F 2 = 8 2 ⟹ E 2 + 2 C + F 2 = 5 7 6 ⟹ E 2 − 2 C + F 2 = 6 4 . . . ( 1 ) . . . ( 2 )
⟹ ( 1 ) − ( 2 ) : 4 C = 5 1 2 ⟹ C = 1 2 8