Find cd

Geometry Level 2

A B C \triangle ABC has A B = B C AB=BC , A C = 16 AC = 16 , and B = 9 0 \angle B = 90^\circ . A C AC is extended to D D such that B D = 17 BD=17 . Find the length of C D CD .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 13, 2020

Extend A B AB to E E such that D E A = 9 0 \angle DEA=90^\circ . Since A B C \triangle ABC is a right isosceles triangle, A = 4 5 \angle A = 45^\circ . Let C D = x CD=x . Then A E = D E = 16 + x 2 AE= DE = \dfrac {16+x}{\sqrt 2} and B E = x 2 BE=\dfrac x{\sqrt 2} . By Pythagorean theorem, we have:

B E 2 + D E 2 = B D 2 x 2 2 + ( 16 + x ) 2 2 = 1 7 2 x 2 + x 2 + 32 x + 256 = 578 x 2 + 16 x 161 = 0 ( x 7 ) ( x + 23 ) = 0 Since x > 0 x = 7 \begin{aligned} BE^2 + DE^2 & = BD^2 \\ \frac {x^2}2 + \frac {(16+x)^2}2 & = 17^2 \\ x^2 + x^2 + 32x + 256 & = 578 \\ x^2 + 16x - 161 & = 0 \\ (x-7)(x+23) & = 0 & \small \blue{\text{Since }x > 0} \\ x & = \boxed 7 \end{aligned}

Marvin Kalngan
May 14, 2020

Let x = A B = B C x=AB=BC , then

16 = x 2 16=x\sqrt{2}

x = 16 2 x=\dfrac{16}{\sqrt{2}}

Apply Sine Law on C D B \triangle CDB

sin C D B 16 2 = sin 135 17 \dfrac{\sin \angle CDB}{\dfrac{16}{\sqrt{2}}}=\dfrac{\sin 135}{17}

C D B = 28.0 7 \angle CDB = 28.07^\circ

a n g l e C B D = 180 135 28.07 = 16.9 3 angle CBD = 180-135-28.07=16.93^\circ

Apply Sine Law on C D B \triangle CDB again,

C D sin 16.93 = 17 sin 135 \dfrac{CD}{\sin 16.93}=\dfrac{17}{\sin 135}

C D = 7 units \color{#69047E}\large{\boxed{CD = \text{7 units}}}

B C = 8 2 BC = 8\sqrt{2} A C B = 45 ° B C D = 135 ° \; \angle ACB = 45\degree \Rightarrow \angle BCD = 135\degree

Let C D = x CD = x

Applying cosine formula in B C D \triangle BCD

1 7 2 = ( 8 2 ) 2 + x 2 2 ( 8 2 ) x cos 135 ° 289 128 = x 2 + 16 x x 2 + 16 x 161 = 0 ( x 7 ) ( x + 23 ) = 0 17^2 = (8\sqrt{2})^2 + x^2 - 2\cdot(8\sqrt{2})x\text{ cos }135\degree\newline\Rightarrow 289 - 128 = x^2 + 16x\newline\Rightarrow x^2 + 16x - 161 = 0\newline\Rightarrow (x - 7)(x + 23) = 0\newline Taking positive value of x x .

C D = x = 7 CD = x = 7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...