Find DC/DA

Geometry Level pending

Point D D in A B C \triangle ABC is such that D A B = D A C = 1 5 \angle DAB = \angle DAC = 15^\circ , D B A = 3 0 \angle DBA = 30^\circ , and D B C = 7 5 \angle DBC = 75^\circ .

Find D C D A \dfrac {DC}{DA} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let A B = 1 AB=1 . By sine rule , D A A B = sin D B A sin B D A D A = sin 3 0 sin 13 5 = 1 2 \dfrac {DA}{AB} = \dfrac {\sin \angle DBA}{\sin \angle BDA} \implies DA = \dfrac {\sin 30^\circ}{\sin 135^\circ} = \dfrac 1{\sqrt 2} . Also A C A B = sin C B A sin B C A A C = sin 10 5 sin 4 5 = 2 sin 7 5 \dfrac {AC}{AB} = \dfrac {\sin \angle CBA}{\sin \angle BCA} \implies AC = \dfrac {\sin 105^\circ}{\sin 45^\circ} = \sqrt 2 \sin 75^\circ . By cosine rule .

D C 2 = D A 2 + A C 2 2 D A A C cos D A C ( D C D A ) 2 = 1 + 4 sin 2 7 5 4 sin 7 5 cos 1 5 Note that sin ( 9 0 θ ) = cos θ = 1 + 4 cos 2 1 5 4 cos 2 1 5 D C D A = 1 \begin{aligned} DC^2 & = DA^2 + AC^2 - 2DA \cdot AC \cos \angle DAC \\ \left(\frac {DC}{DA}\right)^2 & = 1 + 4\sin^2 75^\circ - 4 \sin 75^\circ \cos 15^\circ & \small \blue{\text{Note that }\sin (90^\circ - \theta) = \cos \theta} \\ & = 1 + 4\cos^2 15^\circ - 4\cos^2 15^\circ \\ \implies \frac {DC}{DA} & = \boxed 1 \end{aligned}

Let A C D = α , C D = x , A D = y , B D = z \angle {ACD}=α, |\overline {CD}|=x, |\overline {AD}|=y, |\overline {BD}|=z . Then x sin 15 ° = y sin α , y sin 30 ° = z sin 15 ° , z sin ( 45 ° α ) = x sin 75 ° \dfrac{x}{\sin 15\degree}=\dfrac{y}{\sin α}, \dfrac{y}{\sin 30\degree}=\dfrac{z}{\sin 15\degree},\dfrac{z}{\sin (45\degree-α)}=\dfrac{x}{\sin 75\degree} . So, y= 2 z cos 15 ° , z = x sin α , x = y sin 15 ° sin α tan α = 2 3 α = 15 ° C D = A D 2z\cos 15\degree, z=x\sin α, x=\dfrac{y\sin 15\degree}{\sin α}\implies \tan α=2-\sqrt 3\implies α=15\degree\implies |\overline {CD}|=|\overline {AD}| . Hence the required ratio is 1 \boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...