find DJ

Geometry Level 3


The answer is 7.67949.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let A E = G K = H J = F D = x |\overline {AE}|=|\overline {GK}|=|\overline {HJ}|=|\overline {FD}|=x and B H G = H J C = J K F = E G K = α \angle {BHG}=\angle {HJC}=\angle {JKF}=\angle {EGK}=α .

Then x = 10 ( 1 sin α ) 1 + cos α = 10 ( 1 cos α ) sin α x=\dfrac{10(1-\sin α)}{1+\cos α}=\dfrac{10(1-\cos α)}{\sin α} .

Solving this we get α = 30 ° x = 10 ( 1 cos 30 ° ) sin 30 ° = 10 ( 2 3 ) α=30\degree\implies x=\dfrac{10(1-\cos 30\degree)}{\sin 30\degree}=10(2-\sqrt 3) .

So D J = x + 10 sin α = 10 ( 2 3 ) + 5 = 5 ( 5 2 3 ) 7.67949 |\overline {DJ}|=x+10\sin α=10(2-\sqrt 3)+5=5(5-2\sqrt 3)\approx \boxed {7.67949} .

Let E A = a EA = a and J K F = θ \angle JKF = \theta .

Since rectangle A E F D AEFD and rectangle G H J K GHJK are congruent. So. K J = A D = 10 KJ = AD = 10 and G K = E A = a GK = EA = a .

J K F = θ G K E = 90 ° θ = E G K = θ B G H = 90 ° θ B H G = θ \angle JKF = \theta \Rightarrow \angle GKE = 90\degree - \theta = \angle EGK = \theta \Rightarrow \angle BGH = 90\degree - \theta \Rightarrow \angle BHG = \theta .

Hence, B G H F J K \triangle BGH \cong \triangle FJK by A S A ASA criteria.

E K = a sin θ EK = a \text{ sin }\theta and G E = a cos θ GE = a \text{ cos }\theta .

J F = 10 sin θ JF = 10\text{ sin }\theta and K F = 10 cos θ KF = 10\text{ cos }\theta .

So, E F = E K + K F = a sin θ + 10 cos θ EF = EK + KF = a\text{ sin }\theta + 10\text{ cos }\theta .

But E F = A D = 10 EF = AD = 10 .

a sin θ + 10 cos θ = 10 \Rightarrow a\text{ sin }\theta + 10\text{ cos }\theta = 10

a sin θ = 10 10 cos θ \Rightarrow a\text{ sin }\theta = 10 - 10\text{ cos }\theta

a sin θ = 10 ( 1 cos θ ) Eq. 1 \Rightarrow a\text{ sin }\theta = 10(1 - \text{ cos }\theta)\hspace{25pt} \cdots\text{Eq. 1}

B G = A B A E G E = 10 a a cos θ BG = AB - AE - GE = 10 - a - a \text{ cos }\theta

But B D = J F = 10 sin θ BD = JF = 10\text{ sin }\theta

10 a a cos θ = 10 sin θ \Rightarrow 10 - a - a \text{ cos }\theta = 10\text{ sin }\theta

10 ( 1 sin θ ) = a ( 1 + cos θ ) Eq. 2 \Rightarrow 10(1 - \text{ sin }\theta) = a(1+\text{ cos }\theta) \hspace{25pt} \cdots\text{Eq. 2}

Eliminating a a from Eq. 1 \text{Eq. 1} and Eq. 2 \text{Eq. 2} , we get

10 ( 1 sin θ ) sin θ = 10 ( 1 + cos θ ) ( 1 cos θ ) 10(1 - \text{ sin }\theta)\text{ sin }\theta = 10(1+\text{ cos }\theta)(1 - \text{ cos }\theta)

sin θ sin 2 θ = 1 cos 2 θ = sin 2 θ \Rightarrow \text{ sin }\theta - \text{ sin}^2\theta = 1 - \text{ cos}^2\theta = \text{ sin}^2\theta

sin θ = 2 sin 2 θ \Rightarrow \text{ sin }\theta = 2\text{ sin}^2\theta

sin θ = 0 \Rightarrow \text{ sin }\theta = 0\, or sin θ = 1 2 \,\text{sin }\theta = \Large\frac{1}{2}

θ = 0 ° \Rightarrow \theta = 0\degree (Not possible) \hspace{20pt} or \hspace{20pt} θ = 30 ° \theta = 30\degree .

Putting θ = 30 ° \theta = 30\degree in Eq. 1 \text{Eq. 1} , we can get the value of a a .

a = 20 10 3 a = 20 - 10\sqrt{3}

D J = J F + F D = 5 + 20 10 3 = 25 10 3 7.679 DJ = JF + FD = 5 + 20 - 10\sqrt{3} = 25 - 10\sqrt{3} \approx 7.679

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...