Find f(x).

Level pending

I f f ( x ) = x + 0 1 ( x y 2 + x 2 y ) ( f ( y ) ) d y , t h e n f ( x ) i s : If\quad f(x)=x+\int _{ 0 }^{ 1 }{ (x{ y }^{ 2 }+{ x }^{ 2 }y) } (f(y))dy,\\ then\quad f(x)\quad is:

1 None of these 80 x 2 + 180 x 119 \frac { { 80x }^{ 2 }+180x }{ 119 } 0 x 2 + 2 x + 1 { x }^{ 2 }+2x+1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jan 24, 2021

Upon observation, f ( 0 ) = 0 f(0) = 0 for the above functional equation. This clearly eliminates Choices A and E.

If f ( x ) = 0 f(x) = 0 , then we end up with x = 0 x = 0 (which does not hold for all x R x \in \mathbb{R} ). Choice D is also eliminated.

Returning to our original functional equation, we find that:

f ( x ) = x + 0 1 ( x y 2 + x 2 y ) f ( y ) d y = [ 0 1 y f ( y ) d y ] x 2 + [ 1 + 0 1 y 2 f ( y ) d y ] x = A x 2 + B x f(x) = x + \int_{0}^{1} (xy^2 + x^{2}y) \cdot f(y) dy = [\int_{0}^{1} y f(y) dy] \cdot x^2 + [1 + \int_{0}^{1} y^2 f(y) dy] \cdot x = \boxed{Ax^2+Bx} (where A , B A,B are real arbitrary constants)

Substituting this quadratic back into the original functional equation now produces:

A x 2 + B x = x + 0 1 ( x y 2 + x 2 y ) ( A y 2 + B y ) d y ; Ax^2 + Bx = x + \int_{0}^{1} (xy^2 + x^2y)(Ay^2 + By) dy;

or A x 2 + B x = x + 0 1 A x y 4 + ( A x 2 + B x ) y 3 + B x 2 y 2 d y ; Ax^2 + Bx = x + \int_{0}^{1} Axy^4 + (Ax^2 + Bx)y^3 + Bx^2y^2 dy;

or A x 2 + B x = x + [ A 5 x y 5 + ( A 4 x 2 + B 4 x ) y 4 + B 3 x 2 y 3 0 1 ] ; Ax^2 + Bx = x + [\frac{A}{5} xy^5 + (\frac{A}{4}x^2 + \frac{B}{4}x)y^4 + \frac{B}{3}x^2y^3 |_{0}^{1}];

or A x 2 + B x = x + A 5 x + A 4 x 2 + B 4 x + B 3 x 2 ; Ax^2 + Bx = x + \frac{A}{5} x + \frac{A}{4}x^2 + \frac{B}{4}x + \frac{B}{3}x^2;

or A x 2 + B x = 3 A + 4 B 12 x 2 + 20 + 4 A + 5 B 20 x . Ax^2 + Bx = \frac{3A+4B}{12} x^2 + \frac{20+4A+5B}{20}x.

After matching coefficients with one another, we arrive at the 2 x 2 2x2 linear system:

9 A 4 B = 0 9A - 4B = 0

4 A + 15 B = 20 -4A + 15B = 20

which yields A = 80 119 , B = 180 119 A = \frac{80}{119}, B = \frac{180}{119} as the unique solution. This finally gives us f ( x ) = 80 119 x 2 + 180 119 x \boxed{f(x) =\frac{80}{119} x^2 + \frac{180}{119}x} (or Choice C) as the desired function.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...