A number theory problem by Guru Prasaadh

1,0,3,16,45,96, _ _ find the next number ?


The answer is 175.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 27, 2014

I did it the long way, hoping someone will provide a simpler solution.

I checked the differences of successive terms ( Δ n = a n a n 1 \space \Delta _n = a_n - a_{n-1} ), the second differences ( Δ n 2 = Δ n Δ n 1 \space \Delta _n ^2 = \Delta_n - \Delta_{n-1} ) and the third differences ( Δ n 3 = Δ n 2 Δ n 1 2 \space \Delta _n ^3 = \Delta_n^2 - \Delta_{n-1}^2 ). And the results are as follows:

n a n Δ n Δ n 2 Δ n 3 1 1 2 0 1 3 3 3 4 4 16 13 10 6 5 45 29 16 6 6 96 51 22 6 \begin{matrix} n & a_n & \Delta_n & \Delta_n^2 & \Delta_n^3 \\ 1 & 1 & & & \\ 2 & 0 & -1 & & \\ 3 & 3 & 3 & 4 & \\ 4 & 16 & 13 & 10 & 6 \\ 5 & 45 & 29 & 16 & 6 \\ 6 & 96 & 51 & 22 & 6 \end{matrix}

It is noted that for n 4 n \ge 4 , Δ n 3 = 6 \Delta_n^3 = 6 , a constant.

We know that:

Δ n = a n a n 1 \Delta _n = a_n - a_{n-1}

Δ n 2 = Δ n Δ n 1 = ( a n a n 1 ) ( a n 1 a n 2 ) = a n 2 a n 1 + a n 2 \Delta _n ^2 = \Delta_n - \Delta_{n-1} = (a_n - a_{n-1}) - (a_{n-1} - a_{n-2}) = a_n - 2a_{n-1} + a_{n-2}

Δ n 3 = Δ n 2 Δ n 1 2 = ( a n 2 a n 1 + a n 2 ) ( a n 1 2 a n 2 + a n 3 ) \Delta _n ^3 = \Delta_n^2 - \Delta_{n-1}^2 = (a_n - 2a_{n-1} + a_{n-2}) - (a_{n-1} - 2a_{n-2} + a_{n-3}) = a n 3 a n 1 + 3 a n 2 a n 3 \quad \quad \quad \quad \quad \quad \quad \quad = a_n - 3a_{n-1} + 3a_{n-2} - a_{n-3}

Note that in general: Δ n k = i = 0 k ( k i ) a n i \space \Delta _n ^k = \displaystyle \sum _{i=0} ^k {\begin{pmatrix} k \\ i \end{pmatrix} a_{n-i}}

Therefore,

Δ n 3 = a n 3 a n 1 + 3 a n 2 a n 3 = 6 \Delta_n^3 = a_n - 3a_{n-1} + 3a_{n-2} - a_{n-3} = 6

a n = 6 + 3 a n 1 3 a n 2 + a n 3 \Rightarrow a_n = 6 + 3a_{n-1} - 3a_{n-2} + a_{n-3}

a 7 = 6 + 3 ( 96 ) 3 ( 45 ) + 16 = 6 + 288 135 + 16 = 175 \Rightarrow a_7 = 6 + 3(96) - 3(45) + 16 = 6 + 288 -135 + 16 = \boxed{175}

take the difference of difference and u got the logic of this answer

Durgesh Labana - 4 years, 5 months ago
Sarthak Nandan
May 24, 2017

The general term can be written as - ((-1+r)^2)*(r+1) with r varying from 0 to whichever value is wanted.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...