1,0,3,16,45,96, _ _ find the next number ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I did it the long way, hoping someone will provide a simpler solution.
I checked the differences of successive terms ( Δ n = a n − a n − 1 ), the second differences ( Δ n 2 = Δ n − Δ n − 1 ) and the third differences ( Δ n 3 = Δ n 2 − Δ n − 1 2 ). And the results are as follows:
n 1 2 3 4 5 6 a n 1 0 3 1 6 4 5 9 6 Δ n − 1 3 1 3 2 9 5 1 Δ n 2 4 1 0 1 6 2 2 Δ n 3 6 6 6
It is noted that for n ≥ 4 , Δ n 3 = 6 , a constant.
We know that:
Δ n = a n − a n − 1
Δ n 2 = Δ n − Δ n − 1 = ( a n − a n − 1 ) − ( a n − 1 − a n − 2 ) = a n − 2 a n − 1 + a n − 2
Δ n 3 = Δ n 2 − Δ n − 1 2 = ( a n − 2 a n − 1 + a n − 2 ) − ( a n − 1 − 2 a n − 2 + a n − 3 ) = a n − 3 a n − 1 + 3 a n − 2 − a n − 3
Note that in general: Δ n k = i = 0 ∑ k ( k i ) a n − i
Therefore,
Δ n 3 = a n − 3 a n − 1 + 3 a n − 2 − a n − 3 = 6
⇒ a n = 6 + 3 a n − 1 − 3 a n − 2 + a n − 3
⇒ a 7 = 6 + 3 ( 9 6 ) − 3 ( 4 5 ) + 1 6 = 6 + 2 8 8 − 1 3 5 + 1 6 = 1 7 5