Find KN

Geometry Level 3


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Valentino Wu
Jun 21, 2019

Extend B C BC and let the other end point be E E , where B E \overline{BE} = 3.

Connect E M \overline{EM} , M K \overline{MK} , and N L \overline{NL} . Let N L = a \overline{NL} = a , N K = b \overline{NK} = b .

C L \overline{CL} = L K \overline{LK} = 3... ( 1 ) 3 ... (1)

C N \overline{CN} = N M \overline{NM} . . . ( 2 ) ... (2)

C K \overline{CK} = K M \overline{KM} = 6... ( 3 ) 6 ... (3)

From ( 1 ) ( 2 ) (1)(2) we know that M K = 2 a \overline{MK} = 2a

From ( 2 ) ( 3 ) (2)(3) we know that E M = 2 b \overline{EM} = 2b

According to Apollonius's Theorem:

C A 2 \overline{CA}^2 + C B 2 \overline{CB}^2 = 2( C M 2 \overline{CM}^2 + A M 2 \overline{AM}^2 )

85 + 81 = 2 ( C M 2 + 10 ) 85 + 81 = 2(\overline{CM}^2 + 10 )

C M \overline{CM} = 73 \sqrt{73}

C N \overline{CN} = 73 2 \frac{\sqrt{73}}{2}

N K 2 \overline{NK}^2 + N C 2 \overline{NC}^2 = 2( N L 2 \overline{NL}^2 + K L 2 \overline{KL}^2 )

b 2 + 73 4 = 2 a 2 + 18 2 a 2 b 2 = 1 4 . . . ( 4 ) b^2 + \frac{73}{4} = 2a^2 + 18 \Rightarrow 2a^2 - b^2 = \frac{1}{4} ... (4)

E M 2 \overline{EM}^2 + M K 2 \overline{MK}^2 = 2( M B 2 \overline{MB}^2 + B E 2 \overline{BE}^2 )

4 b 2 + 4 a 2 = 38... ( 5 ) 4b^2 + 4a^2 = 38 ... (5)

After doing ( 5 ) ( 4 ) × 2 (5) - (4) \times 2 we get:

6 b 2 = 75 2 6b^2 = \frac{75}{2}

b 2 = 25 4 b = 5 2 = 2.5 b^2 = \frac{25}{4} \Rightarrow b = \frac{5}{2} = \boxed{2.5}

Ajit Athle
Sep 15, 2018

Assume B:(0,0), C:(9.0) and A:(a,b). Then, a²+b²=(2√10)² and (a-9)²+b²=(√85)² which makes A:(2,6),M:(1,3) & N:(5,3/2). This means KN² =(3-5)²+(0-3/2)²=25/4 or KN=5/2=2.5. As simple as that!

Kelvin Hong
Jul 26, 2018

From the picture, we have cos α = ( 2 10 ) 2 + 9 2 ( 85 ) 2 2 9 2 10 = 1 10 \cos\alpha=\frac{(2\sqrt{10})^2+9^2-(\sqrt{85})^2}{2\cdot9\cdot2\sqrt{10}}=\frac1{\sqrt{10}}

Then, M C 2 = 9 2 + ( 10 ) 2 2 9 10 cos α = 91 18 10 1 10 = 91 18 = 73 \begin{aligned}MC^2&=9^2+(\sqrt{10})^2-2\cdot9\cdot\sqrt{10}\cos\alpha\\&=91-18\sqrt{10}\frac1{\sqrt{10}}\\&=91-18\\&=73\end{aligned}

Half the length, N C = 1 2 M C = 73 2 NC=\dfrac12MC=\dfrac{\sqrt{73}}{2} , so N C 2 = 73 4 NC^2=\dfrac{73}{4} .

Finding expression for β \beta : cos β = 9 2 + ( 73 ) 2 ( 10 ) 2 2 9 73 = 144 18 73 = 8 73 K N 2 = K C 2 + N C 2 2 K C N C cos β = 36 + 73 4 2 6 73 2 8 73 = 36 + 73 4 48 = 73 4 12 = 25 4 K N = 5 2 \begin{aligned}\cos\beta&=\frac{9^2+(\sqrt{73})^2-(\sqrt{10})^2}{2\cdot9\cdot\sqrt{73}}\\&=\frac{144}{18\sqrt{73}}\\&=\frac{8}{\sqrt{73}}\\KN^2&=KC^2+NC^2-2KC\cdot NC\cdot\cos\beta\\&=36+\dfrac{73}{4}-2\cdot6\cdot\frac{\sqrt{73}}{2}\cdot\frac{8}{\sqrt{73}}\\&=36+\frac{73}{4}-48\\&=\frac{73}{4}-12\\&=\frac{25}{4}\\\therefore KN&=\boxed{\dfrac{5}{2}}\end{aligned}

Rab Gani
Jul 25, 2018

Use cos rule for ΔABC to find <A. cos A = (40+85-81)/(4√850) = 11/√850 , A=67.8. Use sin rule to find <C, 9/sin⁡A = (2√10)/sinC , C = 40.6 Use sin rule for ΔAMC to find NC=x. 4x^2 = 95 - 2√850 . 11/√850 , x = 4.272. Use cos rule for ΔKNC to find KN. KN^2 = 36 + (73/4) cos 20.3. KN=2.48

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...